Scientists learn more about how gene linked to autism affects brain

June 18, 2018, Cincinnati Children's Hospital Medical Center
This microscopic image shows the presence of basic myelin protein and normal oligodendrocyte cell differentiation in the brain of a mouse. The cells form a protective sheath of insulation around nerves in the outer layers of the brain. Researchers report in Developmental Cell that mutation or loss of a gene called CHD8 hinders formation of the sheath in developing oligodendrocytes, causing neurological defects in the animals. CHD8 is one of the highest risk-susceptibility genes for autism. Credit: Cincinnati Children's

New preclinical research shows a gene already linked to a subset of people with autism spectrum disorder is critical to healthy neuronal connections in the developing brain, and its loss can harm those connections to help fuel the complex developmental condition.

Scientists at Cincinnati Children's Hospital Medical Center report in Developmental Cell their data clarify the biological role of the gene CHD8 and its protein CHD8 in developing oligodendrocytes, cells that form a protective insulation around nerves. The sheath supports neuronal connections in the brain and manifest themselves in .

Although previous studies show disruptive mutations in CHD8 cause autism spectrum disorders (ASDs) and abnormalities in the brain's white matter, the underlying biology has been a mystery.

The current study, published online June 18, shows that disruption of CHD8 hinders the production and maintenance of nerve insulation—harming the brain's and contributing to white matter damage. In laboratory mouse models genetically engineered to not express the CHD8 protein in the oligodendrocytes, the animals exhibited behavioral anomalies and seizures, according to lead study investigator Q. Richard Lu, Ph.D., Division of Experimental Hematology and Cancer Biology.

"So far no treatment is available for autism patients with mutations in CHD8, one of the highest risk-susceptibility genes for autism," Lu said. "Current studies are still at a very early stage in terms of therapeutic agents, but our findings present a potential strategy to restore the function of faulty CHD8-dependent processes."

Reversing Damage

Scientists found the strategy by using a number of experimental procedures with mice, including ChIP-Seq analysis of specific DNA-binding sites in developing oligodendrocytes, which helped them unravel biological processes. Their data showed that CHD8 loss or mutation reduces the function of what is known as a histone methyltransferase, which helps activate target genes needed for development.

They then figured out that using an experimental compound (CPI-455), which inhibits a different molecule linked to CHD8 called histone demethylase, rescued the development of oligodendrocytes. This reversed white matter defects in CHD8-mutant mice and reduced neurological problems in the animals.

Lu said the findings suggest that modulating the activity of CHD8 and the molecules that control it has the potential to enhance the generation of neuronal insulation in people with ASDs. He also stressed it will be years before knowing if the research will translate to clinical care in patients.

Additional studies are needed to verify the current study's findings, identify a suitable drug, and test its safety and effectiveness in laboratory models.

Unlocking the Code

CHD8 functions in the cell nucleus. It essentially unlocks the double-helix structure in the nucleus that contains DNA and RNA coding molecules. This allows changes to the helix's genetic and molecular composition that support the development of oligodendrocytes and nerve insulation by regulating levels of encoded gene products.

When mutations or loss of CDH8 occur, it results in harmful remodeling of molecular components in the helix (referred to as chromatin).

Explore further: Study shows connection between key autism risk genes in the human brain

More information: Developmental Cell (2018). DOI: 10.1016/j.devcel.2018.05.022

Related Stories

Study shows connection between key autism risk genes in the human brain

March 10, 2015
A new study reveals an important connection between dozens of genes that may contribute to autism, a major step toward understanding how brain development goes awry in some individuals with the disorder.

Mice provide insight into genetics of autism spectrum disorders

June 27, 2017
While the definitive causes remain unclear, several genetic and environmental factors increase the likelihood of autism spectrum disorder, or ASD, a group of conditions covering a "spectrum" of symptoms, skills and levels ...

Researchers find genetic link to autism known as CHD8 mutation

July 3, 2014
In a collaboration involving 13 institutions around the world, researchers have broken new ground in understanding what causes autism. The results are being published in Cell magazine July 3, 2014: "Disruptive CHD8 Mutations ...

Oligodendrocytes selectively myelinate a particular set of axons in the white matter

October 21, 2016
There are three kinds of glial cells in the brain: oligodendrocytes, astrocytes and microglia. Oligodendrocytes myelinate neuronal axons to increase conduction velocity of neuronal impulses. A Japanese research team at the ...

Researchers identify new cause of brain defects in tuberous sclerosis patients

February 9, 2017
Boston Children's Hospital researchers have uncovered a new molecular pathway that inhibits the myelination of neurons in the brains of patients with the rare genetic disorder tuberous sclerosis complex (TSC). The study, ...

Regulator of chromosome structure crucial to healthy brain function and nerve development

April 13, 2017
In the nucleus of eukaryotic cells, DNA is packaged with histone proteins into complexes known as chromatin, which are further compacted into chromosomes during cell division. Abnormalities in the structure of chromosomes ...

Recommended for you

Researchers identify new genetic disorder

September 21, 2018
Researchers from Michigan State University College of Human Medicine and physicians from Spectrum Health have identified for the first time in a human patient a genetic disorder only previously described in animal models.

Test could detect patients at risk from lethal fungal spores

September 20, 2018
Scientists at The University of Manchester have discovered a genetic mutation in humans linked to a 17-fold increase in the amount of dangerous fungal spores in the lungs.

Researchers identify a new cause of childhood mitochondrial disease

September 20, 2018
A rapid genetic test developed by Newcastle researchers has identified the first patients with inherited mutations in a new disease gene.

Why some human genes are more popular with researchers than others

September 18, 2018
Historical bias is a key reason why biomedical researchers continue to study the same 10 percent of all human genes while ignoring many genes known to play roles in disease, according to a study publishing September 18 in ...

Class of neurological disorders share 3-D genome folding pattern, study finds

September 18, 2018
In a class of roughly 30 neurological disorders that includes ALS, Huntington's Disease and Fragile X Syndrome, the relevant mutant gene features sections of repeating base pair sequences known as short tandem repeats, or ...

Researchers resolve decades-old mystery about the most commonly mutated gene in cancer

September 18, 2018
The most commonly mutated gene in cancer has tantalized scientists for decades about the message of its mutations. Although mutations can occur at more than 1,100 sites within the TP53 gene, they arise with greatest frequency ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.