Study shows connection between key autism risk genes in the human brain

March 10, 2015 by Lindsay Borthwick, Yale University

A new study reveals an important connection between dozens of genes that may contribute to autism, a major step toward understanding how brain development goes awry in some individuals with the disorder.

The research shows that CHD8, a gene that is strongly linked to autism, acts as a master regulator in the developing human brain and controls the expression of many other . Many of the genes it targets have also been implicated in the disorder, the researchers found.

The study, led by James P. Noonan, associate professor of genetics and of ecology and evolutionary biology, is published March 10 in the journal Nature Communications.

"Strong genetic evidence has identified a set of regulatory genes as being important for autism risk. But it has been difficult to gain insight into the biological mechanisms that might be perturbed because we couldn't functionally connect these genes with each other. Now, we can," said Noonan, a member of the Kavli Institute for Neuroscience, and senior author of the study.

Recent studies have identified several dozen genes potentially associated with autism. In the past three years, the gene CHD8 has emerged as one of the strongest candidates. Individuals with a loss-of-function mutation in this gene, which inactivates the corresponding protein, are very likely to have an .

CHD8 is thought to regulate gene expression by modifying the way DNA interacts with histones, proteins present in the nucleus of every cell that wind long strands of DNA like a spool. Until now, however, it has been unclear which genes CHD8 targets in the brain and whether these genes also play a role in autism.

By building out the network of genes regulated by CHD8, the researchers aim to understand which biological processes are disrupted by the harmful mutations in these genes that affect some individuals with the disorder.

To answer these questions, Noonan and his colleagues first identified sites in the genome that were bound by CHD8 in cells from the developing brains of humans and mice as well as cultured human neuronal stem cells. They found that CHD8 binds to thousands of targets in each tissue. Many of these binding sites were conserved across the two species, suggesting that CHD8 regulates genes that are broadly important for in mammals.

Next, they looked to see whether CHD8 was regulating genes implicated in autism by previous genetic studies, including a study led by co-authors and Nenad Sestan of Yale's Kavli Institut of Neuroscience and Matthew State, formerly of Yale and now at the University of California-San Francisco. They found that these autism-associated genes were more likely to be targeted by CHD8 than expected by chance, in both humans and mice.

To evaluate whether CHD8 directly regulated these other autism risk genes, the researchers reduced the expression of the CHD8 gene in cultured human neuronal stem cells and explored what, if any, levels changed. They found that depletion of CHD8 dysregulated many of its ; however, autism risk genes were most strongly affected.

"Our results really point to CHD8 as being a major regulator of a whole network of genes that are involved in autism," said Justin Cotney, the first author on the paper and associate research scientist in the Noonan lab. "What's so exciting about these findings is that we can use these data to predict additional autism genes, which before we had limited power to do."

The new study begins to simplify the complex web of genes that may be involved in autism by investigating the targets of genes that have been linked to the disorder in a systematic way. The researchers are currently investigating the regulatory roles of the genes targeted by CHD8 in brain tissue.

"We believe this will help reveal specific biological pathways and developmental processes that are affected in ," Noonan said.

Explore further: Researchers find genetic link to autism known as CHD8 mutation

Related Stories

Researchers find genetic link to autism known as CHD8 mutation

July 3, 2014
In a collaboration involving 13 institutions around the world, researchers have broken new ground in understanding what causes autism. The results are being published in Cell magazine July 3, 2014: "Disruptive CHD8 Mutations ...

Researchers map 'switches' that shaped the evolution of the human brain

March 5, 2015
Thousands of genetic "dimmer" switches, regions of DNA known as regulatory elements, were turned up high during human evolution in the developing cerebral cortex, according to new research from the Yale School of Medicine.

Autism genes activate during fetal brain development

February 18, 2015
Scientists at the University of California, San Diego School of Medicine have found that mutations that cause autism in children are connected to a pathway that regulates brain development. The research, led by Lilia Iakoucheva, ...

Molecular network identified underlying autism spectrum disorders

December 30, 2014
Researchers in the United States have identified a molecular network that comprises many of the genes previously shown to contribute to autism spectrum disorders. The findings provide a map of some of the crucial protein ...

Mutations in 3 genes linked to autism spectrum disorders

April 4, 2012
Mutations in three new genes have been linked to autism, according to new studies including one with investigators at Mount Sinai School of Medicine. All three studies include lead investigators of the Autism Sequencing Consortium ...

Brain inflammation a hallmark of autism, large-scale analysis shows

December 10, 2014
While many different combinations of genetic traits can cause autism, brains affected by autism share a pattern of ramped-up immune responses, an analysis of data from autopsied human brains reveals. The study, a collaborative ...

Recommended for you

Childhood stress leaves lasting mark on genes

July 18, 2018
Kids who experience severe stress are more likely to develop a host of physical and mental health problems by the time they reach adulthood, including anxiety, depression and mood disorders. But how does early life stress ...

Protein found to be key component in irregularly excited brain cells

July 17, 2018
In a new study in mice, researchers have identified a key protein involved in the irregular brain cell activity seen in autism spectrum disorders and epilepsy. The protein, p53, is well-known in cancer biology as a tumor ...

World's largest study on allergic rhinitis reveals new risk genes

July 17, 2018
An international team of scientists led by Helmholtz Zentrum München and University of Copenhagen has presented the largest study so far on allergic rhinitis in the journal Nature Genetics. The data of nearly 900,000 participants ...

New platform poised to be next generation of genetic medicines

July 16, 2018
A City of Hope scientist has discovered a gene-editing technology that could efficiently and accurately correct the genetic defects that underlie certain diseases, positioning the new tool as the basis for the next generation ...

Overcoming a major barrier to developing liquid biopsies

July 16, 2018
The idea of testing blood or urine to find markers that help diagnose or treat disease holds great promise. But as technology has improved to allow researchers to examine tiny fragments of RNA, one major problem has led to ...

Genetic marker for drug risk in multiple sclerosis offers path toward precision medicine

July 16, 2018
A team of researchers has uncovered a specific gene variant associated with an adverse drug reaction resulting in liver injury in a people with multiple sclerosis (MS). It is the first time researchers have been able to establish ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Stevepidge
1 / 5 (1) Mar 10, 2015
So, they found a mater switch, with connections with the expression of autism.. This tells us nothing about why and perhaps WHAT triggered the switch in genetic expression that led to the massive increases seen today in the development of Autism among our youth. I guess it must be random gene expression lol.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.