Scientists detect new ovarian cancer target

June 13, 2018, University of Texas M. D. Anderson Cancer Center

Researchers at Houston Methodist Research Institute and The University of Texas MD Anderson Cancer Center have found a prescription drug, Calcitriol, approved by the Food and Drug Administration for the treatment of calcium deficiency and kidney diseases, may increase the likelihood of surviving ovarian cancer.

Their preclinical research, reported in the Journal of the National Cancer Institute, integrated computational modeling and biology experiments in cell lines and mouse models to pinpoint a molecular pathway between malignant and supportive cells, called fibroblasts, associated with poor prognosis for patients with high-grade serous , the most common and difficult form of the disease.

A review of potential drugs by Houston Methodist researchers indicated that a synthetic and active form of a vitamin D analog called Calcitriol might break up molecular communication between cells and fibroblasts, a finding confirmed in mouse models by MD Anderson researchers.

This study opens a new potential avenue for treating ovarian cancer. Since Calcitriol is an FDA-approved drug, no additional research is needed before the drug can advance to human clinical trials for ovarian cancer. The researchers are working to address regulatory procedures, planning and funding required to open a clinical trial.

"Targeting cancer cells might not be the only solution to treating cancer. Other cells in the tumor and surrounding microenvironment, such as fibroblasts, immune cells, fat cells and other supportive cells make up the very complex ecosystem of tumors that we need to understand," said Samuel Mok, Ph.D., professor of Gynecologic Oncology and Reproductive Medicine and co-senior author of the study.

Using a computer modeling technique pioneered by co-senior author Stephen Wong, Ph.D., the Houston Methodist team processed and analyzed genomic big data to identify crosstalk targets and screen FDA-approved drugs. Their approach allowed them to look at the complexity of the interactions among tumor cells and different types of supporting cells to see a full map of their intricacies.

"In this era of big data, we can systematically identify pathways and therapies, as we're using an unbiased approach to look at all possibilities," said Wong, chair of systems medicine and bioengineering and John S. Dunn Sr. Presidential Distinguished Chair in Biomedical Engineering at Houston Methodist. "Our computational modeling can tell you which pathway is important for a particular disease. It allows for the heterogeneous tumor data to be fed in to the model to precisely identify these pathways, giving us a comprehensive view and allowing us to see specifically which malfunctioning cells to target."

Fibroblasts make and maintain connective tissue that provides a scaffolding for organs. To better understand their role, Mok, co-lead author Tsz-Lun Yeung, Ph.D., and colleagues carved out fibroblasts from tumor samples to study separately, using a precise process called laser microdissection.

They studied gene expression by these cancer-associated fibroblasts (CAFs) and found the fibroblasts had two distinct expression, or signatures that they named CAF-C and CAF-N.

"A survival analysis of these two CAF types in 46 ovarian cancer patients showed that patients with CAF-C fibroblasts had a poor prognosis, with median overall survival of 16 months compared to 33 months for the other type," Mok said.

Smad signaling between cancer cell, fibroblasts

The next step was to sort out what, specifically, makes the CAF-C group promote aggressive disease. Using a multi-cellular crosstalk modeling tool developed by Wong, called CCCExplorer (Cell-Cell Communication Explorer), co-lead author Jianting Sheng, Ph.D., and colleagues of the Houston Methodist team input gene-expression profiles from micro-dissected and neighboring ovarian provided by Mok to compute, predict and prioritize crosstalk pathways and cell-to-cell interactions in the tumor microenvironment.

"We identified a signaling pathway, called Smad, as the culprit of poor ovarian cancer outcomes," Wong said. "Reprogramming these cells by targeting their communication networks presents an opportunity for the development of new cancer treatment strategies. If we focus on targeting these supportive cells in the tumor microenvironment instead of the tumor, itself, it could lead to less toxic, more effective treatments."

Experiments by Mok and colleagues confirmed the primacy of Smad signaling. Gene expression analysis again clustered patients into two groups; those with high expression of Smad-regulated genes had median overall survival of 15 months compared to 26 months for those with low expression.

Wong and colleagues at Houston Methodist applied another computational module in their CCCExplorer tool to predict known drugs that have passed phase I safety trials that might target Smad signaling. Calcitriol was selected for further studies in part because previous research shows it can inhibit the binding of Smad proteins to their target genes.

MD Anderson cell line experiments showed Calcitriol blocks Smad signaling. Treating ovarian-tumor bearing mice with Calcitriol reduced cancer cell proliferation and tumor volume while lengthening median overall survival from 36 to 48 weeks.

"We know that cells in the tumor microenvironment actually support the cancer and may contribute to its aggressiveness. This study opens up a new potential avenue for developing ovarian cancer treatments," said co-author Karen Lu, M.D., chair of Gynecologic Oncology and Reproductive Medicine at MD Anderson and J. Taylor Wharton, M.D., Distinguished Chair in Gynecologic Oncology.

"These researchers have developed a unique and powerful concept to decode crosstalk and interactions among different cell components in the complex ," said Jenny C. Chang, M.D., director of Houston Methodist Cancer Center and Emily Herrmann Chair in Cancer Research. "Instead of testing one hypothesis at a time, the modeling tool now allows the cancer researchers and drug designers to comprehensively evaluate major intercellular crosstalk pathways simultaneously to find novel targets for ovarian and other cancers."

Explore further: Researchers identify compound to prevent breast cancer cells from activating in brain

Related Stories

Researchers identify compound to prevent breast cancer cells from activating in brain

March 22, 2018
Researchers at Houston Methodist used computer modeling to find an existing investigational drug compound for leukemia patients to treat triple negative breast cancer once it spreads to the brain.

Immune cells help reverse chemotherapy resistance in ovarian cancer

May 20, 2016
Inside each ovarian tumor, there are good cells and bad cells. A new paper explains their roles:

Ovarian cancer cells hijack surrounding tissues to enhance tumor growth

September 4, 2012
Tumor growth is dependent on interactions between cancer cells and adjacent normal tissue, or stroma. Stromal cells can stimulate the growth of tumor cells; however it is unclear if tumor cells can influence the stroma.

Mathematical modeling offers new way to understand variable responses to targeted therapy

April 3, 2018
Cancer therapies that target a specific protein have improved outcomes for patients. However, many patients eventually develop resistance to these targeted therapies and their cancer comes back. It is believed that differences ...

Repurposing existing FDA-approved inhibitors may provide new treatment approach for ovarian cancer

March 27, 2018
Wistar researchers have found rationale for repurposing a class of antitumor compounds called HDAC inhibitors, already approved by the FDA for the treatment of diseases such as leukemia, as a new therapeutic option for ovarian ...

Silencing cancer cell communication may reduce the growth of tumors

January 30, 2017
In several types of cancer, elevated expression of the chemokine receptor CCR4 in tumors is associated with poor patient outcomes. Communication through CCR4 may be one mechanism that cancer cells use to create a pro-tumor ...

Recommended for you

Why some cancers affect only young women

October 19, 2018
Among several forms of pancreatic cancer, one of them specifically affects women, often young. How is this possible, even though the pancreas is an organ with little exposure to sex hormones? This pancreatic cancer, known ...

Scientists to improve cancer treatment effectiveness

October 19, 2018
Together with researchers from the University of Nantes and the University of Reims Champagne-Ardenne in France, experts from the National Research Nuclear University MEPhI have recently developed a quantum dot-based microarray ...

Mutant cells colonize our tissues over our lifetime

October 18, 2018
By the time we reach middle age, more than half of the oesophagus in healthy people has been taken over by cells carrying mutations in cancer genes, scientists have uncovered. By studying normal oesophagus tissue, scientists ...

Study involving hundreds of patient samples may reveal new treatment options of leukemia

October 17, 2018
After more than five years and 672 patient samples, an OHSU research team has published the largest cancer dataset of its kind for a form of leukemia. The study, "Functional Genomic Landscape of Acute Myeloid Leukemia", published ...

A 150-year-old drug might improve radiation therapy for cancer

October 17, 2018
A drug first identified 150 years ago and used as a smooth-muscle relaxant might make tumors more sensitive to radiation therapy, according to a recent study led by researchers at The Ohio State University Comprehensive Cancer ...

Loss of protein p53 helps cancer cells multiply in 'unfavourable' conditions

October 17, 2018
Researchers have discovered a novel consequence of loss of the tumour protein p53 that promotes cancer development, according to new findings in eLife.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.