Tau does not stabilize microtubules, challenges approach to treating Alzheimer's

June 28, 2018, Drexel University
This image represents the role of tau and MAP6 in regulating the stable (green) and dynamic (red) parts of a neuron's microtubules. Depleting tau from cultured rat neurons led to greater stability of the neuron's microtubules. Credit: Drexel University

A new study by researchers from Drexel University College of Medicine reverses the popular scientific dogma that the protein tau stabilizes microtubules within brain cells. The scientists' new research, published this week in Current Biology, suggests just the opposite: Tau's actual role in the neuron is to allow microtubules to grow and remain dynamic.

This is critical because both the stable and dynamic regions of the must be present in the brain for successful cognitive function, according to Liang Oscar Qiang, Ph.D., the study's lead author and a research assistant professor in the College of Medicine.

"We think the reason why the brain has so much tau is to ensure that there is always a robust dynamic component to the microtubules," Qiang said. "Otherwise, without tau, too much of the microtubule mass of the brain would be stable."

This new discovery suggests that microtubule-stabilizing drugs currently in clinical trials may not be effective in treating Alzheimer's and other tau-based , said Peter Baas, Ph.D., a professor in the Department of Neurobiology and Anatomy at Drexel College of Medicine and the study's principal investigator.

"The popular theory suggests that patients with neurodegenerative diseases are losing microtubules because they are becoming less stable. What our study suggests is that, with the depletion of tau, patients are in fact losing the dynamic regions of microtubule," said Baas. "So, by treating neurodegenerative diseases with microtubule-stabilizing drugs, the potential exists for making matters worse rather than better."

Microtubules are tubular polymers that make up the infrastructure of a cell and also act as railways to transport organelles throughout the cytoplasm. These intracellular structures have a stable , as well as a region that remains dynamic, which are both important to their role in a cell.

Tau is one of the hallmark proteins of Alzheimer's disease. In the diseased brain, tau breaks away from microtubules and forms neurofibrillary tangles, blocking nutrient transport to neurons and eventually killing them.

Drugs that affect microtubule stability are currently under investigation as potential therapies for Alzheimer's, because it is nearly universally accepted by the scientific community—evidenced by documentation in hundreds of research papers, websites and instructional materials—that the role of tau is to stabilize microtubules in neurons of the brain, specifically in nerve fibers called axons.

Despite this widespread belief, a research group reported almost 20 years ago that tau may not be responsible for microtubule stability. Drexel researchers decided to delve deeper into the question by depleting tau from cultured rat neurons and comparing microtubule levels in their axons after four days.

They found that the volume of microtubules was reduced in the axon, not due to their destabilization, but rather because of preferential loss of the dynamic regions of the microtubules. In fact, depleting tau made the remaining microtubules more stable, instead of less. This alters our basic understanding about tau.

"We found that tau does not stabilize the neuron's microtubules. The real work of tau is to protect the dynamic regions of microtubules from being stabilized and also to allow them to lengthen," said Baas.

In other words, rather than thinking about tau as a railroad tie—needed at regular intervals to stabilize a track—the protein acts more like a bridge pier, allowing microtubules to remain constantly in motion. Otherwise, the bridge would crack.

The researchers also studied MAP6, which they call a "genuine stabilizer of microtubules," from the cultured neurons, and found that MAP6 spreads out on the microtubule when tau is depleted, which explains why the microtubules become more stable when they lose their tau.

The research team's next steps will be to repeat similar experiments in adult rodent brain. If they can replicate their results, they will seek to "restore what is lost" in the neurodegenerative by recovering the lost dynamic regions of the microtubules through novel therapeutic approaches.

Explore further: New regulator of neuron formation identified

More information: Liang Qiang et al, Tau Does Not Stabilize Axonal Microtubules but Rather Enables Them to Have Long Labile Domains, Current Biology (2018). DOI: 10.1016/j.cub.2018.05.045

Related Stories

New regulator of neuron formation identified

June 27, 2018
The protein NEK7 regulates neuron formation, as it is required for dendrite growth and branching, as well as the formation and shaping of dendritic spines. These are the main conclusions of a study published in Nature Communications ...

The function of NIMA-related kinase 6 in the straight growth of plant cells

November 29, 2017
Plants continuously generate various kinds of organs such as roots, leaves and flowers. The growth morphology of each organ is achieved by the directional growth of plant cells. Prior to cell growth, an intracellular cytoskeleton ...

Cell skeleton and the brush border

February 1, 2018
The epithelial cells lining organs like the intestines and kidneys build a special surface called the "brush border," which consists of a dense array of finger-like protrusions.

How to build a better railway—in (almost) every cell in your body

March 12, 2018
New work from the University of Warwick shows how a microscopic 'railway' system in our cells can optimise its structure to better suit bodies' needs.

Microtubule bridges organize the cytoskeletons of cells in the early embryo

February 13, 2018
Scientists at A*STAR have discovered how cells in the nascent embryo organize the 'bones' that make up the skeleton, known as microtubules. While this discovery has resolved one mystery, it also raises a range of new questions.

Researchers discover the machinery that neurons use to form and maintain their neuronal extensions

July 22, 2016
Scientists at the Institute for Research in Biomedicine (IRB Barcelona), headed by Jens Lüders, group leader of the Microtubule Organization Laboratory, have described a new molecular mechanism that plays a key role in forming ...

Recommended for you

Study clarifies ApoE4's role in dementia

September 20, 2018
ApoE4, a protein linked to both Alzheimer's disease and a form of dementia caused by damage of blood vessels in the brain, increases the risk of cognitive impairment by reducing the number and responsiveness of blood vessels ...

Machine learning IDs markers to help predict Alzheimer's

September 19, 2018
Nearly 50 million people worldwide have Alzheimer's disease or another form of dementia. These irreversible brain disorders slowly cause memory loss and destroy thinking skills, eventually to such an extent that self-care ...

Discovery could explain failed clinical trials for Alzheimer's, and provide a solution

September 19, 2018
Researchers at King's College London have discovered a vicious feedback loop underlying brain degeneration in Alzheimer's disease which may explain why so many drug trials have failed. The study also identifies a clinically ...

Air pollution may be linked to heightened dementia risk

September 18, 2018
Air pollution may be linked to a heightened risk of developing dementia, finds a London-based observational study, published in the online journal BMJ Open. The associations found couldn't be explained by factors known to ...

A new approach for finding Alzheimer's treatments

September 11, 2018
Considering what little progress has been made finding drugs to treat Alzheimer's disease, Maikel Rheinstädter decided to come at the problem from a totally different angle—perhaps the solution lay not with the peptide ...

Study prevents cognitive decline in older blacks with memory loss

September 10, 2018
With nearly twice the rate of dementia as whites, blacks are at a higher risk for developing diseases like Alzheimer's, but there has been little research on how to reduce this racial health disparity. A new study in black ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.