Case study: Child's lobectomy reveals brain's ability to reorganize its visual system

July 31, 2018, Carnegie Mellon University
The figure above shows patient UD's left and right hemispheres after the procedure. The dotted line indicates where the entire occipital lobe -- which includes the brain's visual processing center -- and most of his temporal lobe were removed. Despite the lobectomy and although UD can't actually 'see' the left half of his world, the preserved left hemisphere compensated for visual tasks such as recognizing faces and objects. Credit: Carnegie Mellon University

A new study led by Carnegie Mellon University neuroscientists provides the first evidence of how the human brain recovers the ability to function after losing parts of the visual system.

Published in Cell Reports, the researchers report on three years of behavioral and imaging tests on a nearly seven year-old boy—"UD"—who had a third of the right hemisphere of his brain removed in an attempt to control seizures. Even though the procedure left UD unable to see the left side, the team found that his brain's left hemisphere eventually compensated for such as recognizing faces and objects.

"These findings provide a detailed characterization of the visual system's plasticity during children's brain development," said Marlene Behrmann, the Cowan University Professor of Cognitive Neuroscience in CMU's Dietrich College of Humanities and Social Sciences and the Center for the Neural Basis of Cognition. "They also shed light on the visual system of the cortex and can potentially help neurologists and neurosurgeons understand the kind of changes that are possible in the brain."

UD's entire occipital lobe—which includes the brain's visual processing center—and most of his temporal lobe—which receives both visual and auditory cues—were removed, leaving only two of the four lobes in his right hemisphere untouched.

To investigate how the lobectomy impacted UD, the researchers used fMRI testing at five different points over three years to evaluate how he performed certain visual and behavioral tasks. The researchers were surprised that the intact regions of UD's left came to do the work of both hemispheres and process faces, objects and words.

Specifically, they found that UD's brain reorganized to compensate for some higher-order functions, like analyzing complex visual cues needed to recognize faces and words normally. However, it did not regain the ability to do lower-order functions, such as receiving and transmitting visual aspects from 180 degrees, which leaves the left side blind to him.

"The only deficit is that he can not see the entire visual field. When he is looking forward, visual information falling on the left side of the input is not processed, be he could still compensate for this by turning his head or moving his eyes," Behrmann said. "Moreover, by tracking the changes in the brain as UD developed, we were able to show which parts of the brain remained stable and which were reorganized over time. This offers insight into how the brain can remap visual in the cortex."

Lobectomy procedures are rare, done on only four to six percent of patients of all ages with medically intractable epilepsy. UD, who is now almost 11, is free of seizures. As before the surgery, his IQ is above average and his language and visual perception skills are age appropriate.

While Behrmann hopes that this study can be used to inform more life-changing neural procedures, many critical scientific questions remain.

"More needs to be done to understand which lobectomy patients will show recovery, which will not and why not," she said. "It will also be important to know if patients are more likely to regain functions if the left or is removed and if the visual system is more robust in younger individuals."

Explore further: Bridging the gap between human memory and perception

More information: "Successful Reorganization of Category-Selective Visual Cortex following Occipito-temporal Lobectomy in Childhood" Cell Reports (2018). DOI: 10.1016/j.celrep.2018.06.099 , http://www.cell.com/cell-reports/fulltext/S2211-1247(18)31041-6

Related Stories

Bridging the gap between human memory and perception

July 13, 2018
The hippocampus may relay predictions about what we expect to see based on past experience to the visual cortex, suggests a human neuroimaging published in JNeurosci. The study is among the first to examine the interaction ...

Seeing through the eyes of a crab—new research provides insight into the visual world of a crustacean

July 16, 2018
Crabs combine the input from their two eyes early on in their brain's visual pathway to track a moving object, finds new research published in JNeurosci. This study of adult male crabs from Argentina's Atlantic coast provides ...

Blind people have brain map for 'visual' observations too

May 17, 2017
Is what you're looking at an object, a face, or a tree? When processing visual input, our brain uses different areas to recognize faces, body parts, scenes, and objects. Scientists at KU Leuven (University of Leuven), Belgium, ...

Kids see words and faces differently from adults

February 26, 2018
Young children literally see words and faces differently from adults. Where adults can most easily comprehend a word when they look at it straight on, children need to look a bit up and to the left. For faces, they need to ...

Inability to recognize faces linked to broader visual recognition problems

June 25, 2018
Imagine that you're supposed to meet colleagues for dinner, only you can't remember what their faces look like. For some, this is a reality, as people with face blindness or developmental prosopagnosia (DP) have severe difficulties ...

The human brain can 'see' what is around the corner

December 4, 2017
Neuroscientists at the University of Glasgow have shown how the human brain can predict what our eyes will see next, using functional magnetic resonance imaging (fMRI).

Recommended for you

Perinatal hypoxia associated with long-term cerebellar learning deficits and Purkinje cell misfiring

August 18, 2018
Oxygen deprivation associated with preterm birth leaves telltale signs on the brains of newborns in the form of alterations to cerebellar white matter at the cellular and the physiological levels. Now, an experimental model ...

People are more honest when using a foreign tongue, research finds

August 17, 2018
New UChicago-led research suggests that someone who speaks in a foreign language is probably more credible than the average native speaker.

Critical role of DHA on foetal brain development revealed

August 17, 2018
Duke-NUS researchers have found evidence that a natural form of Docosahexaenoic Acid (DHA) made by the liver called Lyso-Phosphatidyl-Choline (LPC-DHA), is critical for normal foetal and infant brain development, and that ...

Automated detection of focal epileptic seizures in a sentinel area of the human brain

August 17, 2018
Patients with focal epilepsy that does not respond to medications badly need alternative treatments.

Men and women show surprising differences in seeing motion

August 16, 2018
Researchers reporting in the journal Current Biology on August 16 have found an unexpected difference between men and women. On average, their studies show, men pick up on visual motion significantly faster than women do.

Brain response study upends thinking about why practice speeds up motor reaction times

August 16, 2018
Researchers in the Department of Physical Medicine and Rehabilitation at Johns Hopkins Medicine report that a computerized study of 36 healthy adult volunteers asked to repeat the same movement over and over became significantly ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.