Innovative CRISPR study recreates genetic steps required for benign moles to turn malignant

July 9, 2018, University of California, San Francisco
Credit: Wikimedia Commons/National Cancer Institute

UC San Francisco researchers have identified the sequence of genetic changes that transform benign moles into malignant melanoma in a large cohort of human skin cancer patients and have used CRISPR gene editing to recreate the steps of melanoma evolution one by one in normal human skin cells in the lab. The research identified key molecular warning signs that could be used by clinicians to catch developing cancers before they spread and could also lead to new targeted therapies.

Melanoma is most commonly triggered by exposure to ultraviolet (UV) rays in sunlight, which damages DNA, creating genetic mutations that cause skin cells to multiply and spread. Often, these cells produce benign moles, pigmented skin growths that are self-limiting in size. While most moles never turn cancerous, some can transform into and rapidly spread to other parts of the body. Melanomas can almost always be successfully treated if they are caught early, but fewer than 30 percent of patients with survive more than five years, making melanoma the deadliest form of skin cancer.

The new research, published July 9, 2018, in two companion papers in Cancer Cell, for the first time systematically traced how new mutations and changes in gene activity break down cellular protective mechanisms, allowing moles to transform into melanoma and begin to spread. The new studies also identify new biomarkers that could be used in the clinic to more reliably detect rapidly progressing melanomas that require additional treatment beyond surgical removal.

Dermatologists currently diagnose melanomas by taking biopsy samples of suspicious skin growths. If the lesion turns out to be a melanoma, pathologists measure its thickness to determine how far it has progressed and whether surgery alone will be enough to eliminate the cancer: The thicker the melanoma, the greater the risk that it has already begun spreading to other parts of the body. But this approach is not very reliable—some thin melanomas metastasize and some thick ones do not.

"It's a very crude assessment of the progression state of a tumor to measure it with a ruler. We'd prefer to be able to measure a mole's genetic state to assess its risk of turning malignant, but the biology of this transformation has not been fully understood," said Boris Bastian, MD, Ph.D., a UCSF Health skin cancer pathologist who directs the Clinical Cancer Genomics Laboratory for the UCSF Helen Diller Comprehensive Cancer Center and was one of the leaders of the new research.

In the first study, led by Bastian and UCSF cancer geneticist Hunter Shain, Ph.D., the researchers studied a unique dataset surgically removed melanoma tissue samples from 82 patients in which malignant tumors and the benign moles from which they had developed were preserved side-by-side. In a subset of patients, the researchers also obtained matched samples of metastatic tumors and the primary melanomas in the skin from which the metastatic colonies had derived. By analyzing these 230 tissue samples, the researchers were able to compare molecular differences between benign growths, malignant melanomas, and metastatic colonies within the same patients.

The researchers sequenced tumor DNA to identify gene mutations arising at different stages of cancer evolution and also measured changes in RNA to connect these mutations to related changes in gene activity. "This is the first study to profile both DNA and RNA from matching melanoma samples and precursor moles from the same patients," Shain said.

"This was made possible by a close collaboration with the large UCSF Health skin pathology service," Bastian added. "Hybrid samples where you can see both the melanoma and the mole that it grew out of are not that common—but from the thousands of melanoma cases we diagnose, we were able to select suitable cases that allowed us to study how the cancer evolves."

The researchers found that as tumors progress, multiple independent gene mutations repeatedly tweak central molecular pathways controlling cell growth, tumor suppression and DNA regulation until enough mutations accumulate to break down cells' natural protective mechanisms and trigger .

"The field has a tendency to oversimplify how cancers evolve, as if there were just a switch that gets flipped on." Shain said, citing the team's own previous work pointing to early activation of the MAP kinase pathway in melanomas. "Now we see that this pathway is turned on just a little early on, then ramped up over the course of tumor evolution. We think this may allow cancers to avoid cellular alarm bells until enough genetic changes have accumulated that the alarms no longer function."

Among other findings, the researchers found that moles consistently developed mutations in the SWI/SNF class of DNA regulatory genes as a key step in their transition to malignancy, suggesting this marker could be used clinically to identify dangerous moles in need of treatment.

In the second paper, led by UCSF melanoma geneticist Robert Judson, Ph.D., the researchers performed an innovative experiment to recreate and study the steps of melanoma evolution in a controlled laboratory setting. Using CRISPR-Cas9 gene editing, the scientists precisely inserted the sequence of mutations they had observed in clinical specimens into normal in the lab.

This allowed the researchers to examine the specific biological effects of each step in melanomas' evolution: for example, they were surprised to discover that mutations disrupting the central tumor suppressor gene CDKN2A did not simply unleash tumor growth, as had been predicted, but also caused affected cells to become highly mobile (and therefore more prone to invade and spread to other parts of the body) through activation of a transcription factor protein called BRN2.

In addition to identifying a key mechanism driving melanoma's deadly ability to metastasize, the new research demonstrates a novel use for CRISPR gene-editing as a laboratory tool for studying melanoma.

"Previous studies have typically used cell lines derived from advanced-stage cancers, where there is so much going wrong at the genetic level that it's hard to know what's causing what," Judson said. "Here we're looking at otherwise healthy cells with specific mutations engineered in. It's much clearer what each mutation does."

"If you go into a cell line bank, you'll never find a mole cell line," Shain added. "Rob's approach allowed us to study the underlying biology of melanoma precursors better than ever before."

The researchers hope this new tool and the discoveries it has already produced will significantly speed research into how to more rapidly diagnose and treat melanoma patients. In particular, they hope that their discoveries will be rapidly incorporated into clinical genetic tests that will allow physicians to quickly assess patients' risk of and assign those at highest risk to early treatment.

"Because we haven't had the tools to identify who is at high risk of metastasis, we have tended to treat everybody as if they were at high risk, exposing them to intense treatment and potential side effects," Bastian said. "We anticipate that looking at genetic changes in melanoma samples here at UCSF will allow us to identify that have progressed to a dangerous state and deploy systemic treatments earlier, which will increase their effectiveness for our patients."

Explore further: Why some moles become melanoma still a mystery

Related Stories

Why some moles become melanoma still a mystery

August 11, 2017
Testing for two gene mutations commonly associated with melanoma would be insufficient to determine whether a mole could turn cancerous, University of Queensland research has found.

Loss of cilia leads to melanoma

July 2, 2018
Most cells in the human body have a cilium, a slender cell protuberance that picks up signals from the cell's external environment. Researchers at the University of Zurich have now shown that these fine sensory antennae play ...

Melanoma's genetic trajectories are charted in new study

November 11, 2015
An international team of scientists led by UC San Francisco researchers has mapped out the genetic trajectories taken by melanoma as it evolves from early skin lesions, known as precursors, to malignant skin cancer, which ...

Study of patients with melanoma finds most have few moles

March 2, 2016
Most patients with melanoma had few moles and no atypical moles, and in patients younger than 60, thick melanomas were more commonly found in those with fewer moles but more atypical moles, according to an article published ...

New findings explain how UV rays trigger skin cancer

October 18, 2017
Melanoma, a cancer of skin pigment cells called melanocytes, will strike an estimated 87,110 people in the U.S. in 2017, according to the Centers for Disease Control and Prevention. A fraction of those melanomas come from ...

Hundreds of cancer possibilities arise from common skin mole mutation

April 23, 2015
A Houston Methodist-led team of international scientists has identified hundreds of possible new genes in mice that could transform benign skin growths into deadly melanomas.

Recommended for you

Researchers suggest new treatment for rare inherited cancers

July 16, 2018
Studying two rare inherited cancer syndromes, Yale Cancer Center (YCC) scientists have found the cancers are driven by a breakdown in how cells repair their DNA. The discovery, published today in Nature Genetics, suggests ...

Researchers map 'family trees' of acute myeloid leukemia

July 16, 2018
For the first time, a team of international researchers has mapped the family trees of cancer cells in acute myeloid leukaemia (AML) to understand how this blood cancer responds to a new drug, enasidenib. The work also explains ...

Scientists sharpen the edges of cancer chemotherapy with CRISPR

July 13, 2018
Tackling unsolved problems is a cornerstone of scientific research, propelled by the power and promise of new technologies. Indeed, one of the shiniest tools in the biomedical toolkit these days is the genome editing system ...

Products of omega-3 fatty acid metabolism may have anticancer effects, study shows

July 13, 2018
A class of molecules formed when the body metabolizes omega-3 fatty acids could inhibit cancer's growth and spread, University of Illinois researchers report in a new study in mice. The molecules, called endocannabinoids, ...

Looking at the urine and blood may be best in diagnosing myeloma

July 13, 2018
When it comes to diagnosing a condition in which the plasma cells that normally make antibodies to protect us instead become cancerous, it may be better to look at the urine as well as the serum of our blood for answers, ...

Massive genome havoc in breast cancer is revealed

July 12, 2018
In cancer cells, genetic errors wreak havoc. Misspelled genes, as well as structural variations—larger-scale rearrangements of DNA that can encompass large chunks of chromosomes—disturb carefully balanced mechanisms that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.