Molecular culprits of protein aggregation in ALS and FTLD

July 19, 2018, VIB (the Flanders Institute for Biotechnology)

The mutated and aggregated protein FUS is implicated in two neurodegenerative diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Using a newly developed fruit fly model, researchers led by prof. Ludo Van Den Bosch (VIB-KU Leuven) have focused on the protein structure of FUS to gain more insight into how it causes neuronal toxicity and disease.

ALS and FTLD are adult-onset neurodegenerative disorders that differ in terms of the symptoms they cause and the neurons they affect. In ALS, the neurons that control muscle movement degenerate, resulting in progressive paralysis, while FTLD affects specific brain areas and causes dementia. Still, many patients present with symptoms of both diseases, so scientists and clinicians now believe they are actually on opposite ends of the same disease spectrum.

The overlap between ALS and FTLD is not only apparent in the clinic, but also when looking at the underlying disease mechanisms. FUS, for example, is implicated in both diseases. Mutations in the FUS gene cause familial ALS and aggregation of the FUS is observed in both ALS and FTLD.

From liquid droplets to insoluble aggregates

FUS normally resides in the nucleus of the cell, but relocates to stress granules in the cytoplasm upon cellular stress. Stress granules are basically in the cell, similar in content to the toxic protein aggregates found in ALS and FTLD, but different in that their assembly is dynamic and reversible.

Could these liquid serve as stepping stones toward the formation of aggregates that are typical for disease? "We believe so," says Elke Bogaert, one of the researchers working with prof. Van Den Bosch. "Both FUS droplets and hydrogels have been shown to undergo a switch to irreversible fibrillarization in a test tube, but this process has not been studied in a cellular context".

The team generated a fruit fly model of FUS toxicity to investigate the formation of liquid droplets in more detail. They identified a previously unrecognized synergistic effect between two different protein regions that mediate toxicity. "We found that the FUS protein that is misbehaving in ALS and FTLD can form liquid droplets via specific molecular interactions between hydrophobic and charged amino acids," explains Steven Boeynaems, another researcher involved in the study.One FUS protein domain was generally considered to mediate aggregation, but the new findings indicate that arginine residues in another region of the protein are also required for maturation of FUS in cellular stress granules.

Problems in flies, and humans?

Further experiments immediately hinted at the importance of this protein interaction. Boeynaems says, "We showed that the interactions between exactly these two protein domains could explain toxicity in our fruit fly ALS model, suggesting how the protein may be misregulated in patients as well."

Prof. Ludo Van Den Bosch underscores the importance of figuring out the exact process of this so-called phase separation of droplets, that mature into aggregates: "Deciphering how and why proteins such as FUS start aggregating in the brain will be key to understand neurodegenerative diseases and could lead to novel therapeutic strategies. Our new findings highlight an important role for arginine-rich domains in the pathology of these proteins."

Explore further: New toxic pathway identified for protein aggregates in neurodegenerative disease

More information: Molecular dissection of FUS points at synergistic effect of low-complexity domains in toxicity, Bogaert, Boeynaems, et al. 2018 Cell Reports. www.cell.com/cell-reports/full … 2211-1247(18)30997-5

Related Stories

New toxic pathway identified for protein aggregates in neurodegenerative disease

March 17, 2017
Led by professor Ludo Van Den Bosch (VIB-KU Leuven), scientists from Belgium, the UK and the US have identified new processes that form protein "clumps" that are characteristic of amyotrophic lateral sclerosis (ALS) and frontotemporal ...

A new mechanism for neurodegeneration in a form of dementia

May 8, 2018
A new study in Biological Psychiatry reports that dementia-related and psychiatric-related proteins cluster together to form aggregates in the brain, leading to abnormal cell function and behavior. Aggregation of the protein ...

Researchers describe mechanism of protein accumulation in neurodegenerative diseases

April 20, 2018
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have characterized the mechanism that initiates the pathological aggregation of the protein FUS, which plays a central role in two distinct neurodegenerative diseases.

Insights into familial middle-age dementia suggest new avenues for treatment

February 26, 2018
Frontotemporal lobar degeneration (FTLD) is one of the most common causes of early-onset dementia, and can lead to personality changes, impaired speaking and motor dysfunction. While most cases occur sporadically, several ...

Researchers find transport molecule has unexpected role

June 14, 2018
UT Southwestern researchers recently reported a basic science finding that might someday lead to better treatments for neurodegenerative diseases like a hereditary form of Lou Gehrig's disease.

Tau mutations may increase cancer risk

May 24, 2018
Mutations to the protein tau, commonly associated with neurodegenerative disorders, may serve as a novel risk factor for cancer, according to results published in Cancer Research, a journal of the American Association for ...

Recommended for you

Study points to possible new therapy for hearing loss

October 15, 2018
Researchers have taken an important step toward what may become a new approach to restore hearing loss. In a new study, out today in the European Journal of Neuroscience, scientists have been able to regrow the sensory hair ...

Sugar, a 'sweet' tool to understand brain injuries

October 15, 2018
Australian researchers have developed ground-breaking new technology which could prove crucial in treating brain injuries and have multiple other applications, including testing the success of cancer therapies.

Scientists examine how neuropathic pain responds to Metformin

October 15, 2018
Scientists seeking an effective treatment for one type of chronic pain believe a ubiquitous, generic diabetes medication might solve both the discomfort and the mental deficits that go with the pain.

Abnormal vision in childhood can affect brain functions

October 13, 2018
A research team has discovered that abnormal vision in childhood can affect the development of higher-level brain areas responsible for things such as attention.

Study: Ketogenic diet appears to prevent cognitive decline in mice

October 12, 2018
We've all experienced a "gut feeling"—when we know deep down inside that something is true. That phenomenon and others (like "butterflies in the stomach") aptly describe what scientists have now demonstrated: that the gut ...

Two seemingly opposing forces in the brain actually cooperate to enhance memory formation

October 12, 2018
The brain allows organisms to learn and adapt to their surroundings. It does this by literally changing the connections, or synapses, between neurons, strengthening meaningful patterns of neural activity in order to store ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.