How Mycobacterium tuberculosis escapes death in macrophages

July 10, 2018, University of Alabama at Birmingham
Michael Niederweis. Credit: UAB

The bacteria that cause the devastating disease tuberculosis have the ability to escape destruction and grow after they are engulfed by lung macrophages, the immune cells that are supposed to destroy pathogens. Now researchers at the University of Alabama at Birmingham have described key biochemical steps between the bacteria Mycobacterium tuberculosis and the macrophage responsible for that ability.

This knowledge, Michael Niederweis, Ph.D., and colleagues say, reveals patient-targeted strategies to treat , which kills 1.4 million people and infects another 10 million each year. Niederweis is a professor of microbiology at UAB, and the study appears in the journal Cell Reports.

Three years ago, the Niederweis group described the first toxin ever found in M. tuberculosis despite 132 years of study. This contrasted with nearly all other pathogenic bacteria, whose toxins contribute to illness or death.

They named the toxin tuberculosis necrotizing toxin, or TNT, and showed that TNT is the founding member of a novel class of previously unrecognized toxins present in more than 600 bacterial and fungal species. These include Yersinia pestis, the bacteria that caused the Black Death bubonic plague in Medieval Europe.

The Niederweis team found that TNT enzymatically hydrolyzes NAD+, a vital coenzyme in all living , and this loss of NAD+ inside the macrophages somehow leads to necrotic cell death of the macrophage, which releases the M. tuberculosis bacteria to infect more cells. This necrotic death hijacked the macrophage away from its normal route to destroy engulfed bacteria—lysosomal degradation of the bacteria inside the macrophage and programmed cell death, or apoptosis, of the macrophage.

The present study shows how TNT helps win the battle between M. tuberculosis and the human immune system to control the fate of infected macrophages—a critical fight that determines the outcome of the infection.

Macrophages have genes for a canonical pathway to programed necrosis, known as necroptosis, that can be activated by the immune system. The Niederweis group found that depletion of NAD+ by TNT hydrolysis activated two key mediators of that pathway, RIPK3 and MLKL, while bypassing two upstream components of the pathway. At the same time, the powerhouses of the cell called mitochondria became depolarized, and synthesis of ATP, the molecule that provides most of the chemical energy for cells, was impaired.

Surprisingly, when the researchers depleted NAD+ levels in uninfected macrophages by inhibiting an enzyme in the NAD+ salvage pathway, necrosis through the RIPK3 and MLKL pathway was also activated. This showed that NAD+ depletion alone, even when TNT and M. tuberculosis were not present, was sufficient to induce necroptosis.

This finding led to a question: Could the replenishment of NAD+ in an M. tuberculosis-infected macrophage alleviate the cytoxicity caused by TNT? The researchers found that adding nicotinamide, a precursor of NAD+, to the cell culture of infected macrophages increased macrophage viability threefold. Similarly, adding compounds to protect mitochondria in infected macrophages—through either increasing the number of mitochondria, increasing the rate of mitochondrial respiration or preventing formation of mitochondrial permeability—also increased mitochondrial membrane potential and cell viability three- to fourfold in infected macrophages. Furthermore, all four treatments restricted intracellular growth of the M. tuberculosis bacteria.

"The finding that NAD+ depletion triggers programmed cell death to kill macrophages infected with M. tuberculosis," Niederweis said, "reveals strategies for host-targeted approaches to treat tuberculosis."

These could include use of FDA-approved drugs that decrease necroptosis, NAD+ replenishment for patients or use of reagents that promote mitochondrial function, all in combination with antibacterial drugs that are used to treat tuberculosis. These patient-targeted strategies could also apply to other bacterial and fungal pathogens that deplete NAD+.

"Perhaps even more importantly," Niederweis said, "the role of RIPK3 as a cellular energy sensor may play a role in other diseases in which NAD+ deficiency is a common pathological factor, such as Type 2 diabetes and a variety of neurological and heart diseases."

Niederweis said the research "was the result of very productive teamwork" that was conducted in the lab by his postdoctoral fellow David Pajuelo, Ph.D., and Norberto Gonzalez-Juarbe, Ph.D., a postdoctoral fellow in the lab of Carlos J. Orihuela, Ph.D., an associate professor of microbiology at UAB.

Explore further: A 'release and kill' strategy may aid treatment of tuberculosis

Related Stories

A 'release and kill' strategy may aid treatment of tuberculosis

February 8, 2017
Mycobacterium tuberculosis has been called "the perfect pathogen." These bacteria hijack human macrophages, persist inside the cells to evade immune destruction, and then prevent the macrophage from undergoing programmed ...

Scientists show how tularemia bacteria trick cells to cause disease

May 30, 2018
Francisella tularensis is the bacterium that causes tularemia, a life-threatening disease spread to humans via contact with an infected animal or through mosquito, tick or deer fly bites. As few as 10 viable bacteria can ...

Scientists identify protein central to immune response against tuberculosis bacteria

January 12, 2017
UT Southwestern Medical Center researchers have identified a protein that is central to the immune system's ability to recognize and destroy the bacterium responsible for the global tuberculosis (TB) epidemic.The new finding, ...

Tuberculosis and Parkinson's disease linked by unique protein

September 4, 2013
A protein at the center of Parkinson's disease research now also has been found to play a key role in causing the destruction of bacteria that cause tuberculosis, according to scientists led by UC San Francisco microbiologist ...

Recommended for you

Deadly Rift Valley fever: New insight, and hope for the future

July 19, 2018
Health control measures alone could be ineffective in the long term fight against the deadly Rift Valley fever which affects both humans and animals, a new study in the journal PNAS reports.

New guidelines to diagnose, manage rare endocrine disorders

July 19, 2018
International guidelines have been published for the first time to help doctors around the globe diagnose and manage patients with a very rare set of endocrine diseases known as pseudohypoparathyroidism and its related disorders, ...

Overuse of antibiotics not what the doctor ordered

July 19, 2018
With increased use of antibiotics worldwide linked to growing antibiotic resistance, a world-first study co-authored by a QUT researcher has highlighted the growing impact of non-prescription supply of antibiotics in community ...

Alcohol-related cirrhosis deaths skyrocket in young adults

July 18, 2018
Deaths from cirrhosis rose in all but one state between 1999-2016, with increases seen most often among young adults, a new study shows.

Hidden blood in feces may signal deadly conditions

July 17, 2018
(HealthDay)—Even if it's not visible to the naked eye, blood in the stool can be serious—a sign of a potentially fatal disease other than colon cancer, new research suggests.

Childhood abuse linked to greater risk of endometriosis, study finds

July 17, 2018
Endometriosis, a painful condition that affects one in 10 reproductive-age women in the U.S., has been linked to childhood physical and sexual abuse, according to findings published today in the journal Human Reproduction.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.