New study offers hope of recovery from spinal cord injury

July 25, 2018, Tel Aviv University

Spinal cord injury or damage causes permanent changes in strength, sensation and other body functions. Hope of recuperation is slim to none. Now a new Tel Aviv University study finds the intravenous injection of a potent enzyme, just hours after an accident, has the potential to diminish a cascade of pathological events responsible for neuronal death, such as inflammation and scarring.

The study was conducted by Dr. Angela Ruban of TAU's Sackler Faculty of Medicine and Dr. Yona Goldshmit of TAU's Sackler Faculty of Medicine and the Australian Regenerative Medicine Institute, Monash University. It was published in May in the Journal of Neurotrauma.

"Primary mechanical damage to tissue kills a certain amount of neuronal cells. But there's secondary damage due to the release of excess glutamates, which are responsible for additional functional disability," Dr. Goldshmit says. "The main idea is to reduce the secondary damage as soon as possible—to block the body's natural reaction to . This is the role of the enzyme injection we devised."

"When this new treatment will be available to paramedics, the consequences of injuries could be dramatically reduced," Dr. Ruban says.

"Don't wait to diagnose"

Dr. Ruban worked with the late Prof. Vivian I. Teichberg of the Weizmann Institute of Science to develop the "blood glutamate scavenging approach," a treatment based on controlling the levels of glutamate, the most abundant free amino acid in the central nervous system. Glutamate accounts for approximately 60 percent of total neurotransmitter activity in the brain. Dr. Ruban's research has shown the positive effect of the blood glutamate treatment in models of glioblastoma, ALS and others.

"Our takeaway is, 'Don't wait to diagnose it, treat it,'" Dr. Ruban says. "It's similar to aspirin, which can rescue a cardiac patient from irreversible damage if taken within the first few hours of a heart attack. We suggest administering the injection even in cases of uncertain diagnosis. There's no side effect to the injection, but it might just mitigate secondary damage and dramatically improve the quality of a person's life."

According to the research, neurotrauma produces the immediate elevation of extracellular glutamate levels, which leads to inflammation, scar formation and, consequentially, .

"Our new treatment aims to lower levels of glutamate, which is released in toxic quantities after trauma, by intravenous administration of blood glutamate scavengers (BGS), such as recombinant enzyme glutamate?oxaloacetate transaminase (rGOT1) and its co?substrate," Dr. Ruban says.

"If we manage to reduce the amount of glutamate that is released initially, we can moderate the inflammation and scarring, thereby moderating the damage to the tissue and enabling neuronal cells to survive," Dr. Goldshmit adds.

Initial success in mouse models

The research team studied the neuroprotective effect of the blood glutamate scavengers in mouse models of spinal cord injury. After receiving the treatment for five consecutive days, the mice significantly recovered from the injury.

"The treatment increased the survival of neurons at the lesion site and enabled axonal regeneration into the injury site, which resulted in significant functional recovery compared with the untreated mice," Dr. Ruban concludes. "This indicates that drug intervention with blood scavengers following spinal cord injury may be neuroprotective and may create a regenerative environment."

Explore further: Nanoparticles limit damage in spinal cord injury

More information: Yona Goldshmit et al, Blood Glutamate Scavenger as a Novel Neuroprotective Treatment in Spinal Cord Injury, Journal of Neurotrauma (2018). DOI: 10.1089/neu.2017.5524

Related Stories

Nanoparticles limit damage in spinal cord injury

September 5, 2017
After a spinal cord injury, a significant amount of secondary nerve damage is caused by inflammation and internal scarring that inhibits the ability of the nervous system to repair itself.

New hope for spinal cord injury patients

August 29, 2012
A new antibody could reverse the damage caused by trauma to the central nervous system, according to new research.

Spinal cord injury affects the heart

December 12, 2017
Spinal cord injury affects the heart, that's what research published in Experimental Physiology and carried out by researchers from University of British Columbia, Canada has found.

New research sheds light on underlying cause of brain injury in stroke

March 15, 2018
New research shows how the novel drug QNZ-46 can help to lessen the effects of excess release of glutamate in the brain – the main cause of brain injury in stroke.

Promising therapeutic approach for spinal cord injuries

March 1, 2018
The healing ability of the central nervous system is very limited and injuries to the brain or spinal cord often result in permanent functional deficits. Researchers at Karolinska Institutet in Sweden report in the scientific ...

Recommended for you

A 15-minute scan could help diagnose brain damage in newborns

November 14, 2018
A 15-minute scan could help diagnose brain damage in babies up to two years earlier than current methods.

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

New brain imaging research shows that when we expect something to hurt it does, even if the stimulus isn't so painful

November 14, 2018
Expect a shot to hurt and it probably will, even if the needle poke isn't really so painful. Brace for a second shot and you'll likely flinch again, even though—second time around—you should know better.

New clues to the origin and progression of multiple sclerosis

November 13, 2018
Mapping of a certain group of cells, known as oligodendrocytes, in the central nervous system of a mouse model of multiple sclerosis (MS), shows that they might have a significant role in the development of the disease. The ...

Mutations, CRISPR, and the biology behind movement disorders

November 12, 2018
Scientists at the RIKEN Center for Brain Science (CBS) in Japan have discovered how mutations related to a group of movement disorders produce their effects. Published in Proceedings of the National Academy of Sciences, the ...

In live brain function, researchers are finally seeing red

November 12, 2018
For years, green has been the most reliable hue for live brain imaging, but after using a new high-throughput screening method, researchers at the John B. Pierce Laboratory and the Yale School of Medicine, together with collaborators ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.