Promising therapeutic approach for spinal cord injuries

March 1, 2018, Karolinska Institutet

The healing ability of the central nervous system is very limited and injuries to the brain or spinal cord often result in permanent functional deficits. Researchers at Karolinska Institutet in Sweden report in the scientific journal Cell that they have found an important mechanism that explains why this happens. Using this new knowledge, they were able to improve functional recovery following spinal cord injury in mice.

In many organs, damaged tissue can be repaired by generating new cells of the type that were lost. However, after an injury to the central nervous system, a special type of is formed which inhibits this regeneration. Injuries to the brain and therefore often lead to permanent loss of functional ability.

It was recognised more than a century ago that nerve fibres of the central nervous system fail to grow through the scar tissue that forms at a lesion. However, this scar tissue is a complex mesh of different cell types and molecules, and it has been unclear exactly how the scar tissue blocks nerve fibre regrowth. By studying mice with , researchers at Karolinska Institutet have now identified an important mechanism behind this inhibition of nerve fibre regeneration.

"Our findings give an important explanation as to why is so limited following injury to the central nervous system," says Christian Göritz, Associate Professor at the Department of Cell and Molecular Biology and Lau fellow at Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet.

The researchers found that the explanation lies in a small population of cells lining blood vessels that gives rise to a large part of the scar tissue. Inhibiting scar formation by these blood vessel-associated cells allowed some to grow through the injury and reconnect with other nerve cells. This resulted in improved functional recovery following spinal cord injury in mice.

"Further studies are now needed to explore whether this knowledge can be used to promote recovery following to the central nervous system in humans," says Christian Göritz.

Explore further: Stem cell scarring aids recovery from spinal cord injury

More information: David Oliveira Dias et al, Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury, Cell (2018). DOI: 10.1016/j.cell.2018.02.004

Related Stories

Stem cell scarring aids recovery from spinal cord injury

October 31, 2013
In a new study, researchers at Karolinska Institutet in Sweden show that the scar tissue formed by stem cells after a spinal cord injury does not impair recovery; in fact, stem cell scarring confines the damage. The findings, ...

Unexpected cell repairs injured spinal cord

July 7, 2011
Lesions to the brain or spinal cord rarely heal fully, which leads to permanent functional impairment. After injury to the central nervous system (CNS), neurons are lost and largely replaced by a scar often referred to as ...

Scientists discover new way to help nerve regeneration in spinal cord injury

December 11, 2017
There is currently no cure for spinal cord injury or treatment to help nerve regeneration so therapies offering intervention are limited. People with severe spinal cord injuries can remain paralysed for life and this is often ...

Study first to identify the cells driving gecko's ability to re-grow its tail

November 2, 2017
A University of Guelph researcher is the first to discover the type of stem cell that is behind the gecko's ability to re-grow its tail, a finding that has implications for spinal cord treatment in humans.

Spinal cord injury affects the heart

December 12, 2017
Spinal cord injury affects the heart, that's what research published in Experimental Physiology and carried out by researchers from University of British Columbia, Canada has found.

Recommended for you

Protein droplets keep neurons at the ready and immune system in balance

August 15, 2018
Inside cells, where DNA is packed tightly in the nucleus and rigid proteins keep intricate transport systems on track, some molecules have a simpler way of establishing order. They can self-organize, find one another in crowded ...

Research reveals that what we see is not always what we get

August 15, 2018
Researchers are helping to explain why some people anticipate and react to fast-moving objects much quicker than others.

Self-control develops gradually in adolescent brain

August 15, 2018
Different parts of the brain mature at different times, which may help to explain impulsive behaviors in adolescence, suggest researchers from Penn State and the University of Pittsburgh.

New research suggests it's all about the bass

August 15, 2018
When we listen to music, we often tap our feet or bob our head along to the beat – but why do we do it? New research led by Western Sydney University's MARCS Institute suggests the reason could be related to the way our ...

New approach to treating chronic itch

August 15, 2018
Researchers at the University of Zurich have discovered a new approach to suppressing itch by targeting two receptors in the spinal cord with the right experimental drug. In a series of experiments in mice and dogs, they ...

Immune cells in the brain have surprising influence on sexual behavior

August 14, 2018
Researchers have found a surprising new explanation of how young brains are shaped for sexual behavior later in life.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.