Typical mutation in brain cancer cells stifles immune response

July 10, 2018, German Cancer Research Center
Mutated IDH1: Replacing a single amino acid blocks the body's defenses and thwarts immune therapies of brain tumors. Credit: German Cancer Research Center

The exchange of a single amino acid building block in a metabolic enzyme can lead to cancer. In addition, it can impair the immune system, according to scientists from the German Cancer Research Center (DKFZ), the University Hospitals in Mannheim and Heidelberg, and the German Cancer Consortium. It thus blocks the body's immune response in the battle against the mutant molecule and also impedes immunotherapy against brain cancer. This finding opens new insights into cancer development and progression and it also suggests that rethinking antitumor immunotherapy is required.

Alterations in the genetic material are often the first step in carcinogenesis. In many cases, an exchange of a single amino acid building block is all it takes. A prime example for this is the mutant form of a metabolic enzyme called IDH1 (isocitrate dehydrogenase 1). This enzyme has an important task in cellular energy metabolism. However, if IDH1 has undergone an alteration at a specific site, it leads to the formation of a substance called 2 HG, which harms the body. It disturbs the metabolism and stimulates cell division, thus laying the cornerstone for . The scientific term for a cancerogenic metabolic product like 2-HG is "oncometabolite." 2-HG accounts for more than 70 percent of all low-grade gliomas, a type of brain cancer.

Scientists from the German Cancer Research Center and the University Hospitals in Mannheim and Heidelberg have now found that the oncometabolite additionally impairs the body's immune response. Normally, the immune system recognizes mutant IDH1 as foreign. The altered molecule in the tumor should therefore attract immune . Based on this finding, scientists already developed a vaccine that sensitizes the immune system for the battle against brain tumors exhibiting the special IDH1 mutation.

However, the opposite is the case, according to Michael Platten, a neurologist who leads a research department at the DKFZ and is director of the Neurology Department of University Medicine Mannheim (UMM). "In the immediate environment of tumors with the specific mutation in IDH1, we find only very small quantities of immune cells, which are additionally impaired in their functioning," Platten said. "This made us curious and we aimed to find out whether and how the 2-HG oncometabolite directly influences the immune system."

The investigators discovered that the release 2-HG into their environment. T cells—immune cells of the body with an important role in the fight against cancer cells—take up released 2-HG. This subsequently blocks important signaling pathways in the T cells and the immune cells are re-programmed from an active to an inactive state.

"This might explain why the immune system fails to suppress the development of these tumors even though it is essentially capable of fighting tumor cells with the mutant IDH1 molecule," said Lukas Bunse, DKFZ and Heidelberg University Hospital, who is one of the first authors of the publication in Nature Medicine. However, the scientists have also found a method to avoid this blockade. They administered an inhibitor developed by the team led by DKFZ researcher Andreas Deimling to mice with IDH1 mutant tumors. The inhibitor blocks the mutant IDH1 molecule so that no 2-HG forms in the tumor cells. Subsequently, the investigators in fact found larger quantities of active in the tumors and their immediate environment. In addition, immunotherapy combined with the inhibitor was substantially more effective.

Platten thinks that this finding has potential of learning more about other tumors and their treatment. "We now know several of these oncometabolites in different types," the neuroimmunologist said. "It would be interesting to investigate whether suppression of the immune response might be a higher principle in oncometabolites."

The results obtained by the DKFZ researchers already point in a new direction in the treatment of IDH1 mutant tumors. "In future immunotherapies, we will have to attack from two sides," according to Platten, because it has become clear that it is not enough to prime the body's defense mechanisms to attack the mutant IDH1 molecule. "We must additionally block the target protein using a specific inhibitor in order to prevent the production of 2-HG and the resulting suppression of immune response."

Explore further: First positive results toward a therapeutic vaccine against brain cancer

More information: Lukas Bunse et al, Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate, Nature Medicine (2018). DOI: 10.1038/s41591-018-0095-6

Related Stories

First positive results toward a therapeutic vaccine against brain cancer

June 25, 2014
Astrocytomas and oligodendrogliomas are subtypes of a brain cancer called 'glioma'. These incurable brain tumors arise from glial cells, a type of support cell found in the central nervous system. "Low-grade gliomas", which ...

MR spectroscopy imaging reveals effects of targeted treatment of mutant IDH1 gliomas

May 18, 2018
Using a novel imaging method, a Massachusetts General Hospital (MGH) research team is investigating the mechanisms behind a potential targeted treatment for a subtype of the deadly brains tumors called gliomas. In their report ...

Blocking cancer-specific mutations in leukemia and brain tumors

May 30, 2017
The substitution of a single amino acid in a metabolic enzyme can be the cause of various types of cancer. Scientists from the German Cancer Research Center and Heidelberg University Hospital, collaborating with Bayer AG, ...

Persistence pays off in discovery that could lead to improved treatment and survivability of patient

May 1, 2018
It's a discovery more than seven years in the making that researchers believe will vastly illuminate our understanding of deadly brain tumors.

Experimental drugs that change energy supply in cells could slow brain tumor growth

December 14, 2015
Experimental drugs that alter cell metabolism also halted tumor growth and extended survival in mice with cancers linked to changes in the same gene, according to a new study led by researchers at NYU Langone Medical Center, ...

Researchers develop novel immunotherapy to target colorectal cancer

February 13, 2018
A Yale-led research team has developed an antibody that blocks tumors in animal models of colorectal cancer. If the finding is confirmed in clinical trials, the antibody-based treatment could become an effective weapon against ...

Recommended for you

Discovery of kidney cancer driver could lead to new treatment strategy

July 19, 2018
University of North Carolina Lineberger Comprehensive Cancer Center scientists have uncovered a potential therapeutic target for kidney cancers that have a common genetic change. Scientists have known this genetic change ...

High fruit and vegetable consumption may reduce risk of breast cancer, especially aggressive tumors

July 19, 2018
Women who eat a high amount of fruits and vegetables each day may have a lower risk of breast cancer, especially of aggressive tumors, than those who eat fewer fruits and vegetables, according to a new study led by researchers ...

Sunscreen reduces melanoma risk by 40 per cent in young people

July 19, 2018
A world-first study led by University of Sydney has found that Australians aged 18-40 years who were regular users of sunscreen in childhood reduced their risk of developing melanoma by 40 percent, compared to those who rarely ...

Analysis of prostate tumors reveals clues to cancer's aggressiveness

July 19, 2018
Using genetic sequencing, scientists have revealed the complete DNA makeup of more than 100 aggressive prostate tumors, pinpointing important genetic errors these deadly tumors have in common. The study lays the foundation ...

Complementary medicine for cancer can decrease survival

July 19, 2018
People who received complementary therapy for curable cancers were more likely to refuse at least one component of their conventional cancer treatment, and were more likely to die as a result, according to researchers from ...

Overcoming resistance to a standard chemotherapy drug

July 19, 2018
Despite being studied for decades, the chemotherapy drug cisplatin is revealing new aspects of how it works. Researchers at Winship Cancer Institute of Emory University have identified an enzyme responsible for making tumors ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.