New regulator in aggressive breast cancer cells discovered

August 6, 2018, Leibniz Institute on Aging
The protein TRPS1 controls the activity of the YAP protein in breast cancer. If YAP activity is downregulated, the survival prognosis for patients is reduced. If TRPS1 is missing, less or no tumors are occurring. Credit: Kerstin Wagner / FLI; Figure: i.a. www.pixabay.com

Triple-negative breast cancer is a particularly aggressive form of breast cancer. Here, important receptors are missing, which often serve as targets for treatments. Thus, these tumors are unlikely to respond to current therapies. Researchers from the Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) in Jena now identified the protein TRPS1, which is commonly over-expressed in these tumors. When TRPS1 is down-regulated, tumor growth decreases whereas survival rates increase. This is a possible therapeutic approach for the treatment of this aggressive form of breast cancer. The results have now been published in the journal Nature Communications.

Every day, billions of "old" cells get replaced by "new" cells in our body. Maintaining this balance between cell division and cell death is of great importance, as even small irregularities in tissue homeostasis can sooner or later lead to cancer or premature aging. The Hippo pathway plays an important role in the regeneration of tissues but also in the development of cancer. The protein YAP (Yes-associated protein) controls tissue growth and organ size. YAP acts as co-activator and it is responsible for controlling the transcription of specific genes from DNA to mRNA.

Previous studies have shown the cancer-promoting role of YAP, which results in uncontrolled cell division. However, there are certain tumor types, such as breast or colorectal cancer, where an increased activity of the YAP protein surprisingly increases the survival prognosis of cancer patients. Until now, it remained unclear, why the YAP activity differs, it is decreased in certain tissues and tumor types and what mechanisms underlie this phenomenon.

Researchers around Dr. Björn von Eyss, junior group leader at the Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) in Jena, now investigated in collaboration with colleagues of the Francis Crick Institute in London, UK and the University Würzburg, how YAP activity is regulated in breast cancer. The results are now published in the journal Nature Communications.

TRPS1 regulates YAP activity

Many signal pathways are important regulators of YAP activity, sometimes even independently of the Hippo pathway. "This is why we conducted a genome-wide CRISPR screening, to identify new regulators of YAP in an unbiased fashion," says Dana Elster, Ph.D. student in the von Eyss Lab. With this method, the researchers were able to identify the protein TRPS1 (Trichorhinophalangeal Syndrome 1). For YAP-dependent transcription it acts as repressor, inhibiting the expression of many YAP target genes in breast cancer cells. "TRPS1 occupies a large number of genomic sites that are actually regulated by the YAP protein and impedes the transcriptional program," explains Dr. Björn von Eyss. This suppresses YAP-dependent functions such as the transcription of YAP target genes.

If TRPS1 is increased in tumors, such as , a particularly aggressive form of breast cancer, the patients' survival probability decreases. This implies an oncogenic effect of the protein. The results also show a relationship between the two proteins TRPS1 and YAP: If the activity of TRPS1 is increased in the tumor cells, YAP activity is down-regulated. This favors and results in a worse survival prognosis of the breast cancer patients.

TRPS1 tricks the immune system

Furthermore, the researchers found out that this mechanism reduces the number of immune cells within tumors. Such cells are important, because they can fight tumors from "the inside." TRPS1 tricks the immune system and evades the immune defense. If TRSP1 is down-regulated, the immune system regains activity and it recognizes the tumor to fight it.

The researchers hypothesize that need to maintain a certain level of YAP activity that is high enough to maintain the oncogenic functions of YAP, but low enough to evade immunosurveillance. "The role of TRPS1 could therefore be important to maintain a specific level of YAP-activity," says Dr. Björn von Eyss. This underlines the important role of this protein for therapeutic treatments against cancer.

"We will now investigate if our results can lead to new therapeutic treatments for breast cancer patients, whose prognoses are rather poor," explains von Eyss. The development of a new mouse model already was an important step in order to further investigate the discovered mechanism. This approach is also promising for other fields: The research group of Dr. Björn von Eyss has first indications that TRPS1 is playing a role in the aging process. In future research, they thus want to investigate more in detail which age-associated changes are influenced by this factor. Perhaps this will soon make our tissues fitter in old age.

Explore further: Breast cancer growth signals are enhanced by a protein outside cells

More information: Dana Elster et al. TRPS1 shapes YAP/TEAD-dependent transcription in breast cancer cells, Nature Communications (2018). DOI: 10.1038/s41467-018-05370-7

Related Stories

Breast cancer growth signals are enhanced by a protein outside cells

July 6, 2018
New research uncovers how a sticky protein called fibronectin promotes the activity of estrogen in breast cancer cells. The study, "Fibronectin rescues estrogen receptor α from lysosomal degradation in breast cancer cells," ...

A cascade of immune processes offers insights to triple-negative breast cancer

May 24, 2018
Cancer is crafty. To survive and thrive, tumors find a way of thwarting our body's natural systems.

Researchers uncover how cancer stem cells drive triple-negative breast cancer

February 8, 2018
Cleveland Clinic researchers have published findings in Nature Communications on a new stem cell pathway that allows a highly aggressive form of breast cancer - triple-negative breast cancer - to thrive.

Study discovers proteins which suppress the growth of breast cancer tumors

June 12, 2017
Researchers at the University of Birmingham have found that a type of protein could hold the secret to suppressing the growth of breast cancer tumours.

Researchers identified a protein associated with breast cancer

April 18, 2018
Researchers at UT Southwestern Medical Center have identified a protein that is strongly associated with metastatic breast cancer and that could be a target for future therapies.

New breast cancer targets

May 4, 2018
Genome-wide association studies (GWAS) have identified more than 150 genetic variations associated with increased risk for breast cancer. Most of these variants are not located in protein-coding gene regions but are assumed ...

Recommended for you

Two ways cancer resists treatment are actually connected, with one activating the other

December 18, 2018
Drugs that target BRAF and MEK in cancer have shown promise in treating a subset of melanoma that carries a mutation in the BRAF gene, but drug resistance usually emerges, reversing the benefit of these drugs and limiting ...

HPV discovery raises hope for new cervical cancer treatments

December 18, 2018
Researchers at the University of Virginia School of Medicine have made a discovery about human papillomavirus (HPV) that could lead to new treatments for cervical cancer and other cancers caused by the virus.

Vaccine, checkpoint drugs combination shows promise for pancreatic cancers

December 18, 2018
Researchers at the Johns Hopkins Kimmel Cancer Center discovered a combination of a cancer vaccine with two checkpoint drugs reduced pancreatic cancer tumors in mice, demonstrating a possible pathway for treatment of people ...

Researchers identify ways breast cancer avoids immune system detection

December 18, 2018
Recent breakthroughs in immunotherapy are making a huge difference in treating some forms of cancer, especially metastatic cancer. But breast cancer has proven a tricky foe for this new therapy, and an interdisciplinary team ...

Metal chemotherapy drugs boost the impact of immunotherapy in cancer

December 18, 2018
Due to their powerful tumour-killing effect, metal-based chemotherapies are frequently used in cancer treatment. However, it was hitherto assumed that they damaged the immune system, because of their cytotoxic (cell-damaging) ...

10-year follow-up after negative colonoscopies linked to lower colorectal cancer risk

December 17, 2018
Ten years after a negative colonoscopy, Kaiser Permanente members had 46 percent lower risk of being diagnosed with and were 88 percent less likely to die from colorectal cancer compared with those who did not undergo colorectal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.