Study: Brain proteins, patterns reveal clues to understanding epilepsy

August 9, 2018 by Keyonna Summers, University of Nevada, Las Vegas
A team of UNLV, Tufts University, and international researchers has identified which brain proteins might be most influential in controlling neural activity associated with epilepsy and anxiety, paving the way for better prevention and treatments someday. Credit: Martin420/Wikimedia Commons

New therapies could be on the horizon for people living with epilepsy or anxiety, thanks to a breakthrough discovery by UNLV, Tufts University School of Medicine, and an international team of researchers studying how proteins interact to control the firing of brain cells.

The study, published Tuesday in Nature Communications, provides new insight into ways to regulate a specialized "compartment" of cells in the that controls their signaling. If scientists and doctors can influence that compartment, they can control the firing of , which may in turn stop or prevent seizures, among other things.

UNLV neuroscientist and lead author Rochelle Hines said controlling patterns of activity are very important to the brain's function.

"If we can better understand how the brain patterns activity, we can understand how it might go wrong in a disorder like epilepsy, where becomes uncontrolled," Hines said. "And if we can understand what is important for this control, we can come up with better strategies for treating and improving the quality of life for people with and maybe other types of disorders as well, such as anxiety or sleep disorders."

The six-year project moved one step closer to answering decades-old questions about brain wave control, by quantitatively defining how two key proteins—the GABAA receptor a2 subunit and collybistin—interact. When the interaction was disrupted in rodent models, EEG tests showed brain waves moving out of control, mimicking patterns seen in humans with epilepsy and anxiety.

"That's the piece that could potentially change textbooks: Previously, we had questions about how these pieces fit together and thought that maybe a group of three or more proteins interacted," Hines said. "But our team's research strongly suggests that there's a very specific interaction between two of them, and this has implications for how neuroscientists might be able to regulate this area."

Coordinating the research effort was Stephen Moss, professor of neuroscience at Tufts and director of the AstraZeneca Laboratory for Basic and Translational Neuroscience in Boston. Moss said that the study results should stimulate the development of drugs that target the GABAA receptor a2 subunit as new, more effective treatments for epilepsy.

Explore further: Absence epilepsy—when the brain is like 'an orchestra without a conductor'

More information: Rochelle M. Hines et al, Developmental seizures and mortality result from reducing GABAA receptor α2-subunit interaction with collybistin, Nature Communications (2018). DOI: 10.1038/s41467-018-05481-1

Related Stories

Absence epilepsy—when the brain is like 'an orchestra without a conductor'

June 20, 2018
At first, the teacher described her six-year-old student as absentminded, a daydreamer. The boy was having difficulty paying attention in class. As the teacher watched the boy closely, she realized that he was not daydreaming. ...

Structure of major brain receptor that is treatment target for epilepsy, anxiety solved

June 27, 2018
UT Southwestern researchers today published the first atomic structure of a brain receptor bound to a drug used to reverse anesthesia and to treat sedative overdoses.

Repairing a leaky blood-brain barrier in epilepsy

April 9, 2018
Blocking the activity of an enzyme that has a key role in the generation of recurring seizures may provide a new way to treat epilepsy that is resistant to anti-seizure drugs, according to a study of rats and mice published ...

Brain waves may predict and potentially prevent epilepsy

December 21, 2017
Ben-Gurion University of the Negev (BGU) researchers have discovered a promising biomarker for predicting and potentially preventing epileptic seizures in patients with brain injuries using EEG (electroencephalographic) recordings ...

New light shed on mechanisms of paediatric epilepsy

June 11, 2018
Research by Cardiff University has uncovered the brain activity that underlies absence epilepsy, offering new hope for the development of innovative therapies for this disabling disease.

Study finds possibility of new ways to treat, manage epilepsy seizures

May 7, 2018
New findings from the University of Kentucky published in the Journal of Neuroscience demonstrate that there may be ways to address blood-brain barrier dysfunction in epilepsy.

Recommended for you

Dopamine's yin-yang personality: It's an upper and a downer

December 10, 2018
For decades, psychologists have viewed the neurotransmitter dopamine as a double-edged sword: released in the brain as a reward to train us to seek out pleasurable experiences, but also a "drug" the constant pursuit of which ...

Brainwaves suppress obvious ideas to help us think more creatively

December 10, 2018
The human brain needs to suppress obvious ideas in order to reach the most creative ones, according to scientists at Queen Mary University of London and Goldsmiths, University of London.

Regrowing damaged nerves hinges on shutting down key genes

December 10, 2018
Neurons in the brain and spinal cord don't grow back after injury, unlike those in the rest of the body. Cut your finger, and you'll probably be back to using it in days or weeks; slice through your spinal cord, and you likely ...

Editing consciousness: How bereaved people control their thoughts without knowing it

December 10, 2018
People who are grieving a major loss, such as the death of a spouse or a child, use different coping mechanisms to carry on with their lives. Psychologists have been able to track different approaches, which can reflect different ...

Team seeks to create genetic map of worm's nervous system

December 10, 2018
How do you build a brain? What "rules" govern where neurons end up, how they connect to each other, and which functions they perform?

Ezogabine treatment shown to reduce motor neuron excitability in ALS patients

December 10, 2018
Brian Wainger, MD, Ph.D., of the Healey Center for ALS at Massachusetts General Hospital (MGH) presented initial, top-level results of a recently completed phase 2 clinical trial of ezogabine (also called retigabine) on December ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.