Discovery could lead to better treatment for leukemia

August 9, 2018, University of Illinois at Chicago
Bone marrow aspirate showing acute myeloid leukemia. Several blasts have Auer rods. Credit: Wikipedia

Previous research has revealed that patients with acute myeloid leukemia who also have a particular mutation in a gene called NPM1 have a higher rate of remission with chemotherapy. About one-third of leukemia patients possess this favorable mutation, but until now, how it helps improve outcomes has remained unknown.

Scientists from the University of Illinois at Chicago report on how this mutation helps improve sensitivity to in in the journal JCI Insight.

The protein coded for by the NPM1 gene affects the location and activity of another protein called FOXM1. FOXM1 activates other cancer-promoting genes and has been found to be elevated in cancer . The presence of FOXM1, especially at high levels, is a strong predictor of worse treatment outcomes and decreased survival in patients with cancer. When the NPM1 gene is mutated, FOXM1 can't activate additional oncogenes, so patients with this mutation tend to respond better to chemotherapy. A drug that targets and incapacitates FOXM1 in patients without the beneficial NPM1 mutation may help improve the efficacy of chemotherapy.

Acute myeloid leukemia (AML) is a cancer of the bone marrow. In AML, stem cells that would normally differentiate into instead multiply unchecked and fail to develop into mature blood cells. Patients with AML have a high risk of death from uncontrolled infection, fatigue easily and get organ damage because they lack adequate numbers of oxygen-carrying . They are also at high risk for dangerous bleeding because of low numbers of cells that help with blood clotting. It has been known that patients with a mutation in the NPM1 gene have a better response to standard chemotherapy, with up to 80 percent of patients being cured compared to just 40 percent for patients without the mutation.

In previous studies, researchers at UIC led by Andrei Gartel, associate professor of molecular genetics, discovered that one of the roles of the NPM protein is to stabilize FOXM1 and keep it in the nucleus where it can activate other cancer-promoting genes.

Gartel and his colleagues determined that when the NPM1 gene is mutated, FOXM1 migrates out of the nucleus and into the cell's cytoplasm, where it can't interact with DNA. This may explain why patients with this NPM1 mutation have a much better response to chemotherapy and are less likely to relapse.

In their current study, Gartel and his colleagues further explored the relationship between NPM1 and FOXM1 in patients with AML.

The researchers analyzed taken via biopsies from 77 patients with AML and found that the presence of FOXM1 in the cells' nuclei was a strong predictor of poor treatment outcome for individual patients.

"When we then looked in the patients' medical records, we saw that those with FOXM1 present in the nucleus of their cancer cells had worse treatment outcomes, higher rates of chemotherapy resistance and lower survival rates compared to patients without FOXM1 present in the nucleus," said Dr. Irum Khan, assistant professor of clinical medicine in the UIC College of Medicine and first author on the paper.

In mice engineered to overproduce FOXM1 that were caused to develop leukemia, following treatment with cytarabine, a drug commonly used to treat AML, the mice had more residual disease compared to control mice with AML and normal levels of FOXM1.

"Our finding suggests that overexpression of FOXM1 directly induces chemoresistance, which matches what we saw in our analysis of patients' FOXM1 levels and their treatment outcomes," said Khan.

Next, the researchers demonstrated that they could produce a therapeutic response in patient AML cells grown in the lab using a novel oral drug called ixazomib, which is approved to treat another form of cancer called multiple myeloma. In the current paper, Gartel and his colleagues show that ixazomib works in part by suppressing FOXM1.

When the patient were treated with ixazomib plus standard chemotherapy drugs used to treat AML (cytarabine and anthracyclines) the cells showed a higher death rate compared with standard chemotherapy alone. "Ixazomib produced a synergized chemotherapeutic response when added to standard chemotherapy," Gartel said. "We believe this is caused by ixazomib inhibiting the activity of FOXM1."

"There is a real unmet need for new ways to get around the resistance to chemotherapy that patients who don't have this beneficial mutation often face," said Khan. "Drugs that suppress FOXM1 in combination with the standard treatment, such as ixazomib, should result in better outcomes, but clinical trials will ultimately be needed to prove this theory."

Explore further: Molecule's role in cancer suggests new combination therapy

More information: Irum Khan et al, FOXM1 contributes to treatment failure in acute myeloid leukemia, JCI Insight (2018). DOI: 10.1172/jci.insight.121583

Related Stories

Molecule's role in cancer suggests new combination therapy

March 1, 2012
Researchers at the University of Illinois at Chicago College of Medicine have found that a molecule found at elevated levels in cancer cells seems to protect them from the "cell-suicide" that is usually triggered by chemotherapy ...

Study identifies new target for treatment of pulmonary hypertension

April 30, 2018
Scientists at Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago have identified a gene called FoxM1 as a promising target for treatment of pulmonary hypertension, or high ...

Blocking the molecular source of idiopathic pulmonary fibrosis

May 8, 2018
Idiopathic pulmonary fibrosis (IPF) is one of the most challenging and frustrating diseases that pulmonologists face.

Study highlights possible new approach to prostate cancer treatment

August 1, 2013
A study in the Journal of Biological Chemistry identifies a new therapeutic approach to treat prostate cancer.

Clinical trials show promise in leukemia

July 10, 2018
Two drugs that target different mutations showed encouraging results in treating leukemia, according to recent clinical trials published in the New England Journal of Medicine (NEJM) and The Lancet Oncology.

Recommended for you

Mutant cells colonize our tissues over our lifetime

October 18, 2018
By the time we reach middle age, more than half of the oesophagus in healthy people has been taken over by cells carrying mutations in cancer genes, scientists have uncovered. By studying normal oesophagus tissue, scientists ...

Study involving hundreds of patient samples may reveal new treatment options of leukemia

October 17, 2018
After more than five years and 672 patient samples, an OHSU research team has published the largest cancer dataset of its kind for a form of leukemia. The study, "Functional Genomic Landscape of Acute Myeloid Leukemia", published ...

A 150-year-old drug might improve radiation therapy for cancer

October 17, 2018
A drug first identified 150 years ago and used as a smooth-muscle relaxant might make tumors more sensitive to radiation therapy, according to a recent study led by researchers at The Ohio State University Comprehensive Cancer ...

Loss of protein p53 helps cancer cells multiply in 'unfavourable' conditions

October 17, 2018
Researchers have discovered a novel consequence of loss of the tumour protein p53 that promotes cancer development, according to new findings in eLife.

New method uses just a drop of blood to monitor lung cancer treatment

October 17, 2018
Dr. Tasuku Honjo won the 2018 Nobel Prize in physiology or medicine for discovering the immune T-cell protein PD-1. This discovery led to a set of anti-cancer medications called checkpoint inhibitors, one of the first of ...

Researcher fighting breast cancer with light therapy

October 17, 2018
When treatment is working for a patient who is fighting cancer, the light at the end of the tunnel is easier to see.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.