Drugs in development for cancer may also fight brain diseases, including ALS

August 9, 2018, Perelman School of Medicine at the University of Pennsylvania
Drugs in development for cancer may also fight brain diseases, including ALS
In cells under duress, stress granules (in magenta) form outside of the nucleus (in blue). TDP-43 protein in green (arrow) that cannot bind to PolyADP ribose (PAR) builds up in large clumps distinct from stress granules. Credit: Leeanne McGurk, University of Pennsylvania; Molecular Cell

A class of cancer drugs called PARP inhibitors could be useful for treating and preventing brain disorders, including amyotrophic lateral sclerosis (ALS), also called Lou Gehrig's disease, and some forms of frontotemporal degeneration (FTD), by halting the misplacement of specific proteins that affect nerve cells, according to a study published in Molecular Cell by researchers in the the School of Arts and Sciences and the Perelman School of Medicine at the University of Pennsylvania.

The protein TDP-43, when mistakenly outside the nucleus, forms clumps in brain that are affected in ALS and FTD. When out-of-place TDP-43 binds to another molecule, PAR, it amasses in cellular structures called stress granules. While this initial accumulation does not cause imminent harm to a cell, after a prolonged period, TDP-43 changes into structures that are observed in . Now, a team led by Nancy Bonini, Ph.D., a professor of Biology, and James Shorter, Ph.D., a professor of Biochemistry and Biophysics, have found that PARP inhibitors, which stop PAR from being generated, reduced the amount of harmful TDP-43 structures in cells under stress.

Diseases like ALS and FTD-TDP-43 are devastating both for the patient and family and there are limited treatment options. "What excited me about pursuing this pathway was the promise of small molecules that attack the process of TDP-43," said lead author Leeanne McGurk, Ph.D., a research associate in Bonini's lab. "When I tested them on cultured cells, I found they could alleviate the buildup of TDP-43 that mirrors the abnormal protein clumps we see in disease."

In test-tube experiments, the team found that TDP-43 can change from a soluble form to a condensed liquid form by interacting with other TDP-43 molecules and macromolecules like PAR. "The liquid form of TDP-43 is representive of a stress granule and is likely beneficial," Shorter said; however, he noted that if these liquid forms of TDP-43 solidify with time they can be difficult to remove.

This study's promise is that a drug in development as a cancer therapeutic could be used to prevent the formation of harmful TDP-43 clumps in cells. "The PARP inhibitors we tested that antagonized the cytoplasmic accumulation of TDP-43 may one day be optimized as valuable therapeutics for brain diseases," said coauthor Edward Gomes, MS, a research specialist Shorter's lab.

While this work is still being done in the lab, the team's findings provide the next step for neurologists looking for new ways to fight neurodegenerative disorders. "Given the lack of , we are excited by these experiments that help elucidate molecular events that could lead to new therapeutics," said Bonini

Explore further: Putting proteins in their proper place

Related Stories

Putting proteins in their proper place

April 19, 2018
A host of special molecules called nuclear RNA-binding proteins (RBPs), when misplaced outside the nucleus, form the harmful clumps seen in several brain disorders, including frontotemporal dementia (FTD) and amyotrophic ...

Molecular culprits of protein aggregation in ALS and FTLD

July 19, 2018
The mutated and aggregated protein FUS is implicated in two neurodegenerative diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Using a newly developed fruit fly model, researchers ...

Study expands possibilities for treating neurological diseases

June 1, 2018
Researchers in Japan have gained valuable insights into 'stress granules'—clumps of RNAs and proteins that form when cells are stressed by factors such as heat, toxins and viruses, deepening the understanding of proteins ...

Researchers describe mechanism of protein accumulation in neurodegenerative diseases

April 20, 2018
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have characterized the mechanism that initiates the pathological aggregation of the protein FUS, which plays a central role in two distinct neurodegenerative diseases.

Mechanism behind neuron death in motor neurone disease and frontotemporal dementia discovered

April 20, 2018
Scientists have identified the molecular mechanism that leads to the death of neurons in amyotrophic lateral sclerosis (also known as ALS or motor neurone disease) and a common form of frontotemporal dementia.

Researchers identify how a single gene can protect against causes of neurodegenerative diseases

August 2, 2016
New research has identified how cells protect themselves against 'protein clumps' known to be the cause of neurodegenerative diseases including Alzheimer's, Parkinson's and Huntington's disease.

Recommended for you

Antidepressant restores youthful flexibility to aging inhibitory neurons in mice

August 20, 2018
A new study provides fresh evidence that the decline in the capacity of brain cells to change, called "plasticity," rather than a decline in total cell number may underlie some of the sensory and cognitive declines associated ...

New assay to detect genetic abnormalities in sarcomas outperforms conventional techniques

August 20, 2018
Sarcomas are rare tumors that are often misdiagnosed. Specific recurrent chromosomal rearrangements, known as translocations, can serve as essential diagnostic markers and are found in about 20 percent of sarcomas. Identification ...

Perinatal hypoxia associated with long-term cerebellar learning deficits and Purkinje cell misfiring

August 18, 2018
Oxygen deprivation associated with preterm birth leaves telltale signs on the brains of newborns in the form of alterations to cerebellar white matter at the cellular and the physiological levels. Now, an experimental model ...

Team develops new way to grow blood vessels

August 17, 2018
Formation of new blood vessels, a process also known as angiogenesis, is one of the major clinical challenges in wound healing and tissue implants. To address this issue, researchers from Texas A&M University have developed ...

Automated detection of focal epileptic seizures in a sentinel area of the human brain

August 17, 2018
Patients with focal epilepsy that does not respond to medications badly need alternative treatments.

Men and women show surprising differences in seeing motion

August 16, 2018
Researchers reporting in the journal Current Biology on August 16 have found an unexpected difference between men and women. On average, their studies show, men pick up on visual motion significantly faster than women do.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.