Evolutionary changes in the human brain may have led to bipolar disorder and schizophrenia

August 9, 2018, Cell Press
Functional magnetic resonance imaging (fMRI) and other brain imaging technologies allow for the study of differences in brain activity in people diagnosed with schizophrenia. The image shows two levels of the brain, with areas that were more active in healthy controls than in schizophrenia patients shown in orange, during an fMRI study of working memory. Credit: Kim J, Matthews NL, Park S./PLoS One.

The same aspects of relatively recent evolutionary changes that make us prone to bad backs and impacted third molars may have generated long, noncoding stretches of DNA that predispose individuals to schizophrenia, bipolar disorder, and other neuropsychiatric diseases.

A study publishing August 9 in the American Journal of Human Genetics identifies an unusually lengthy array of tandem repeats found only within the human version of a gene governing calcium transport in the brain.

"Changes in the structure and sequence of these nucleotide arrays likely contributed to changes in CACNA1C function during human evolution and may modulate neuropsychiatric risk in modern human populations," says senior author David Kingsley, professor of developmental biology at Stanford University.

Common ailments such as lower back, knee, and foot problems are likely due to the transition to walking upright; impacted wisdom teeth may be tied to humans' smaller jaws and recent changes in diet. Kingsley hypothesizes that the prevalence of neurological diseases in modern humans may stem from recent evolutionary changes in controlling brain size, connectivity, and function.

Bipolar disorder and schizophrenia affect more than 3 percent of the population worldwide.

Missing data

Tandem repeats are repeated lengths of DNA occurring either inside or outside a gene's coding sequence. They have been hypothesized to explain individual-to-individual variations in complex neurological functions and may act as "tuning knobs" for modulating gene expression. The tandem repeats may affect CACNA1C function—even when the coding region of the gene itself is free of mutations.

Most genetic studies focus on how simple letter substitutions in the DNA code cause disease. Yet 15 years after the human genome was mapped, regions of the human genome are still largely unexplored, missing, or understudied, Kingsley says. In particular, large regions of repeated sequence can be difficult to propagate in bacteria and to assemble correctly. Many of these regions also vary substantially between individuals and may contribute to key phenotypic traits and disease susceptibilities in humans and other organisms.

After identifying a large discrepancy between the standard human reference genome and levels of DNA sequence reads coming from a key gene previously linked to psychiatric disease, Kingsley and Stanford colleagues Janet Song and Craig Lowe carried out further studies of 181 human cell lines and postmortem brain tissue samples. They found lengthy stretches of DNA—ten to a hundred times longer and more complex than expected—containing many variant nucleotide base pairs embedded in a noncoding region of the CACNA1C gene.

Different versions of the highly repeated sequences showed different abilities to activate and were tightly linked to genetic markers of bipolar disease and schizophrenia disease susceptibility in humans. Such "hidden variants" may illuminate the risk of psychiatric disease among patients whose DNA profile is otherwise unremarkable, he says.

Kingsley, a Howard Hughes Medical Institute investigator, says classifying patients based on their repeat arrays may help identify those most likely to respond to existing calcium channel drugs. These medications have produced mixed results to date, he notes, and further study is needed to clarify whether patients with a genetic variation of CACNA1C have too much or too little calcium channel activity. "We hope genotype-based drug targeting will lead to improved future treatments," he says.

Evolutionary byproducts

Kingsley says the large structural arrays found in the CACNA1C gene are unique to humans, raising the question of whether we derived an evolutionary advantage from this expanded genetic sequence—even though it apparently increased our susceptibility to neuropsychiatric disease.

His team plans to study the effects on neural differentiation, cell excitability, and brain circuit formation of adding and removing entire repeat arrays from CACNA1C in animal models and cultured cells.

Explore further: Study may explain gene's role in major psychiatric disorders

More information: American Journal of Human Genetics, Song and Lowe et al.: "Characterization of a Human-Specific Tandem Repeat Associated with Bipolar Disorder and Schizophrenia" https://www.cell.com/ajhg/fulltext/S0002-9297(18)30238-6 , DOI: 10.1016/j.ajhg.2018.07.011

Related Stories

Study may explain gene's role in major psychiatric disorders

April 26, 2016
A new study shows the death of newborn brain cells may be linked to a genetic risk factor for five major psychiatric diseases, and at the same time shows a compound currently being developed for use in humans may have therapeutic ...

AI accurately predicts effects of genetic mutations in biological dark matter

July 16, 2018
A new machine learning framework, dubbed ExPecto, can predict the effects of genetic mutations in the so-called "dark matter" regions of the human genome. ExPecto pinpoints how specific mutations can disrupt the way genes ...

Analysis of the 9p21.3 sequence associated with coronary artery disease

March 26, 2018
Before a conclusive link between the SDs and the cardiovascular diseases can be made, further analysis is required on the CAD interval in more patients with coronary artery disease and in the human population, using the TAR ...

Molecular mechanism underlies anxiety, autism

June 19, 2017
A calcium-dependent molecular mechanism discovered in the brain cells of mice by Weill Cornell Medicine investigators may underlie the impaired social interactions and anxiety found in neuropsychiatric disorders – including ...

Combination of CACNA1C-gene and stress increases risk for psychiatric disorders

July 21, 2017
Using genome-wide association studies, researchers are identifying more and more genes associated with psychiatric disorders. However, these studies do not take into account the influence of the environment, which also plays ...

Recommended for you

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

CRISPR joins battle of the bulge, fights obesity without edits to genome

December 13, 2018
A weighty new study shows that CRISPR therapies can cut fat without cutting DNA. In a paper published Dec. 13, 2018, in the journal Science, UC San Francisco researchers describe how a modified version of CRISPR was used ...

Noncoding mutations contribute to autism risk

December 13, 2018
A whole-genome sequencing study of nearly 2,000 families has implicated mutations in 'promoter regions' of the genome—regions that precede the start of a gene—in autism. The study, which appears in the December 14 issue ...

New method for studying ALS more effectively

December 13, 2018
The neurodegenerative disease ALS causes motor neuron death and paralysis. However, long before the cells die, they lose contact with muscles as their axons atrophy. Researchers at Karolinska Institutet in Sweden have now ...

Paternal grandfather's high access to food may indicate higher mortality risk in grandsons

December 12, 2018
A paternal grandfather's access to food during his childhood is associated with mortality risk, especially cancer mortality, in his grandson, shows a large three-generational study from Stockholm University. The reason might ...

New genetic study could lead to better treatment of severe asthma

December 12, 2018
The largest-ever genetic study of people with moderate-to-severe asthma has revealed new insights into the underlying causes of the disease which could help improve its diagnosis and treatment.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.