How to trigger innate fear response?

August 9, 2018, The Korea Advanced Institute of Science and Technology (KAIST)
This illustration describes how ACC-BLA circuit controls innate freezing response depending on its activity level. Credit: KAIST

When animals encounter danger, they usually respond to the situation in one of two ways—by freezing or fleeing. How do they make this quick decision in a life-or-death moment?

According to KAIST neuroscientists, there are two types of : learned versus innate. The latter is known to be induced without any prior experience and is thus naturally encoded in the brain. A research team under Professor Jin-Hee Han in the Department of Biological Sciences identified the brain circuit responsible for regulating the innate .

The study, which appeared in the July 24 issue of Nature Communications, represents a significant step toward understanding how the in the prefrontal cortex create behavioral responses to external threats. This also represents a new paradigm in therapeutic development for fear-related mental disorders.

Responses of freezing or fleeing when facing external threats reflect behavioral and physiological changes in an instinctive move to adapt to the new environment for survival. These responses are controlled by the emotional circuit systems of the brain, and the malfunction of this circuit leads to fear-related disorders.

The anterior cingulate cortex (ACC) is a sub-region within the prefrontal cortex comprising a part of the brain circuitry that regulates behavioral and physiological fear responses. This area is capable of high-order processing of the perceived sensory information and conveys 'top-down' information toward the amygdala and brainstem areas, known as the response outlet.

Many studies have already demonstrated that the brain regions in the prefrontal cortex regulate the response against learned threats. However, it has been unknown how innate responses against fear are encoded in the neural circuits in the prefrontal .

Dr. Jinho Jhang, the lead author of the study, explains how the team achieved their key idea. "Many overseas studies have already proved that the circuit works to regulate the fear response. However, researchers have paid little attention to the innate response against predators. Professor Han suggested we do research on the instinctive fear response instead of the learned response. We particularly focused on the anterior cingulate region, which has been connected with memory, pain and sympathy, but not the fear response itself. Since we turned in this new direction, we have accumulated some significant data," said Dr. Jhang.

For this study, Professor Han's team investigated how mice react when exposed to the olfactory stimuli of predators. Based on the results of optogenetic manipulation, neural circuit tracing, and ex vivo slice electrophysiology experiments, the team demonstrated that the and its projection input to the basolateral amygdala play a role in the inhibitory regulation of innate fear responses to predators' odors in mice.

Professor Han believes these results will extend the understanding of how instinctive fear responses can be encoded in . "Our findings will help to develop therapeutic treatments for mental disorders aroused from fear such as panic disorders and post-traumatic stress disorder," said Professor Han.

Explore further: An unexpected chemosensor pathway for innate fear behavior against predator odor

More information: Jinho Jhang et al, Anterior cingulate cortex and its input to the basolateral amygdala control innate fear response, Nature Communications (2018). DOI: 10.1038/s41467-018-05090-y

Related Stories

An unexpected chemosensor pathway for innate fear behavior against predator odor

May 21, 2018
Innate fear is an essential emotion for animals to avoid danger in a severe natural environment. Rodents kept in a laboratory also show instinctive fear behavior against the smell of predators such as foxes, cats or snakes ...

Tracing the scent of fear: Study identifies neurons, brain region involved in rodent stress response

March 21, 2016
The odor of bobcat urine, if you ever get a chance to take a whiff, is unforgettable—like rotten meat combined with sweat, with something indescribably feral underlying it. To humans, it's just nose-wrinklingly disgusting.

Brain sciences researcher pinpoints brain circuit that triggers fear relapse

February 13, 2018
Steve Maren, the Claude H. Everett Jr. '47 Chair of Liberal Arts professor in the Department of Psychological and Brain Sciences at Texas A&M University, and his Emotion and Memory Systems Laboratory (EMSL) have made a breakthrough ...

The brain has separate 'fear circuits' for dealing with immediate and distant threats

March 6, 2018
Imagine walking alone at night. Up ahead on the sidewalk, you notice a person lurking in the shadows, and a chill runs down your spine. You pause as you run through your options. Do you turn around and go back the way you ...

Scientists show how brain circuit generates anxiety

May 29, 2018
Neuroscientists at Cold Spring Harbor Laboratory (CSHL) have identified a neural circuit in the amygdala, the brain's seat of emotion processing, that gives rise to anxiety. Their insight has revealed the critical role of ...

Recommended for you

Perinatal hypoxia associated with long-term cerebellar learning deficits and Purkinje cell misfiring

August 18, 2018
Oxygen deprivation associated with preterm birth leaves telltale signs on the brains of newborns in the form of alterations to cerebellar white matter at the cellular and the physiological levels. Now, an experimental model ...

People are more honest when using a foreign tongue, research finds

August 17, 2018
New UChicago-led research suggests that someone who speaks in a foreign language is probably more credible than the average native speaker.

Critical role of DHA on foetal brain development revealed

August 17, 2018
Duke-NUS researchers have found evidence that a natural form of Docosahexaenoic Acid (DHA) made by the liver called Lyso-Phosphatidyl-Choline (LPC-DHA), is critical for normal foetal and infant brain development, and that ...

Automated detection of focal epileptic seizures in a sentinel area of the human brain

August 17, 2018
Patients with focal epilepsy that does not respond to medications badly need alternative treatments.

Men and women show surprising differences in seeing motion

August 16, 2018
Researchers reporting in the journal Current Biology on August 16 have found an unexpected difference between men and women. On average, their studies show, men pick up on visual motion significantly faster than women do.

Brain response study upends thinking about why practice speeds up motor reaction times

August 16, 2018
Researchers in the Department of Physical Medicine and Rehabilitation at Johns Hopkins Medicine report that a computerized study of 36 healthy adult volunteers asked to repeat the same movement over and over became significantly ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.