Team identifies developmental stage for no. 1 eye tumor in children

September 14, 2018, Children's Hospital Los Angeles
Developing retina showing cone precursor cells (green) and areas of RB protein loss (red). Credit: Hardeep Singh, PhD, of Children's Hospital Los Angeles

Investigators at Children's Hospital Los Angeles have been able to pinpoint the exact stage of development of the human retina, when cells can grow out of control and form cancer-like masses. The finding could open the door for future interventions in retinoblastoma (RB), a tumor of the retina that affects children under five years of age.

The study is a continuation of research supported by a grant from the National Cancer Institute and was published online Sept. 13 in the prestigious journal PNAS, Proceedings of the National Academy of Sciences.

The investigation represents the first of its kind by identifying the phase of human retinal development when specific —called cone precursors—may turn cancerous.

"Understanding this phase of development and what goes wrong can help us find ways to intervene and eventually prevent ," said David Cobrinik, MD, Ph.D., of The Vision Center at Children's Hospital Los Angeles.

Although rare, retinoblastoma is the most common malignant tumor of the eye in children and can lead to devastating vision loss. CHLA is considered a world leader in the research and treatment of the disease, which can be fatal if not diagnosed early.

In a prior breakthrough in 2014 that led to this study, the CHLA researchers identified cone cells as the cell-of-origin of retinoblastoma. Cone cells, found in the retina, are responsible for color vision.

Following up on the 2014 discovery with the current study, the team found that at a specific point in their maturation, human cone precursors cells can enter the cell cycle—this is a series of events leading to their division. The cells then begin to proliferate and form pre-malignant lesions that can develop into rapidly growing retinoblastoma-like masses. The maturing cone precursors enter the cell cycle in response to the inactivation of the RB1 tumor suppressor gene and loss of functional RB protein, which regulates cell growth and keeps cone precursor cells from dividing.

"We suspect that the maturing cone precursors are wired in a way that causes them to become cancer cells in response to loss of the RB protein," said Cobrinik, an investigator with The Saban Research Institute of CHLA and associate professor of Ophthalmology at the Keck School of Medicine at the University of Southern California.

In another key finding, the investigators compared the developmental process of the human eye to a traditional mouse model. Lead author and postdoctoral research fellow Hardeep Singh, Ph.D., found that developmental stage-specific proliferation and formation of retinoblastoma occurred in RB-deficient human cone precursors but not in mouse precursors. The animal models failed to replicate the genetic, cellular, and developmental features of human retinal cells. This finding calls into question the accuracy of certain animal retinoblastoma models.

An alternative way to study the condition could involve induced , said Cobrinik. These can be generated directly from adult cells and are another subject of investigation in his laboratory.

Retinoblastoma was one of the first tumors to have its genetic cause identified. RB1 mutations were identified at CHLA and other institutions about 30 years ago. Since that time, much has been learned about how RB1 mutations initiate retinoblastoma tumors.

"Given the current state of genomic analyses," said Cobrinik, "we can look forward to a time when we will be able to test for mutations in RB1 as well as other disease-associated genes and provide disease-preventing interventions."

Explore further: How a single, genetic change causes retinal tumors in young children

More information: Hardeep P. Singh et al, Developmental stage-specific proliferation and retinoblastoma genesis in RB-deficient human but not mouse cone precursors, Proceedings of the National Academy of Sciences (2018). DOI: 10.1073/pnas.1808903115

Related Stories

How a single, genetic change causes retinal tumors in young children

September 24, 2014
Retinoblastoma is a childhood retinal tumor usually affecting children one to two years of age. Although rare, it is the most common malignant tumor of the eye in children. Left untreated, retinoblastoma can be fatal or result ...

Oncoproteins interact to promote cancer cell growth in retinoblastoma

October 18, 2016
Researchers at The Saban Research Institute of Children's Hospital Los Angeles have identified an unsuspected and critical role of the MDM2 oncogene in promoting expression of the MYCN oncogene that is required for growth ...

Combination therapy may offer better outcomes for patients with retinoblastoma

April 15, 2016
Researchers at The Saban Research Institute of Children's Hospital Los Angeles (CHLA) have demonstrated that targeting survivin—a protein that inhibits apoptosis or cell death—enhances the effectiveness of chemotherapy ...

Study indicates proof of concept for using a surrogate liquid biopsy to provide genetic profile of retinoblastoma tumors

October 12, 2017
Retinoblastoma is a tumor of the retina that generally affects children under 5 years of age. If not diagnosed early, retinoblastoma may result in loss of one or both eyes and can be fatal. Unlike most cancers that are diagnosed ...

Childhood eye tumor made up of hybrid cells with jumbled development

August 15, 2011
A research team led by St. Jude Children's Research Hospital scientists has identified a potential new target for treatment of the childhood eye tumor retinoblastoma. Their work also settles a scientific debate by showing ...

Recommended for you

From the ashes of a failed pain drug, a new therapeutic path emerges

November 16, 2018
In 2013, renowned Boston Children's Hospital pain researcher Clifford Woolf, MB, BCh, Ph.D., and chemist Kai Johnsson, Ph.D., his fellow co-founder at Quartet Medicine, believed they held the key to non-narcotic pain relief. ...

Repurposing FDA-approved drugs can help fight back breast cancer

November 16, 2018
Screening Food and Drug Administration (FDA)-approved compounds for their ability to stop cancer growth in the lab led to the finding that the drug flunarizine can slow down the growth of triple-negative breast cancer in ...

Traditional chemotherapy superior to new alternative for oropharyngeal cancers

November 16, 2018
A drug increasingly used in combination with radiotherapy to treat a type of cancer that forms in the tonsils or the base of the tongue is inferior to a previously favored option, according to a large, clinical trial led ...

New 'SLICE' tool can massively expand immune system's cancer-fighting repertoire

November 15, 2018
Immunotherapy can cure some cancers that until fairly recently were considered fatal. In addition to developing drugs that boost the immune system's cancer-fighting abilities, scientists are becoming expert at manipulating ...

Anti-malaria drugs have shown promise in treating cancer, and now researchers know why

November 15, 2018
Anti-malaria drugs known as chloroquines have been repurposed to treat cancer for decades, but until now no one knew exactly what the chloroquines were targeting when they attack a tumor. Now, researchers from the Abramson ...

Standard chemotherapy treatment for HPV-positive throat cancer remains the most effective, study finds

November 15, 2018
A new study funded by Cancer Research UK and led by the University of Birmingham has found that the standard chemotherapy used to treat a specific type of throat cancer remains the most effective.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.