Clues to lupus's autoimmune origins in precursor cells

October 10, 2018 by Quinn Eastman, Emory University
Autoreactive CD27 - IgD - CXCR5 - CD11c + (DN2) B cells expand in lupus patients -- DN2 cells derive from naive cells and are poised to generate plasmablasts -- DN2 B cells are hyper-responsive to Toll-like receptor-7 signaling Credit: From Jenks Immunity 2018

In the autoimmune disease systemic lupus erythematosus or SLE, the immune system produces antibodies against parts of the body itself. How cells that produce those antibodies escape the normal "checks and balances" has been unclear, but recent research from Emory University School of Medicine sheds light on a missing link.

Investigators led by Ignacio Sanz, MD, studied blood samples from 90 people living with SLE, focusing on a particular type of B cells. These "DN2" B cells are relatively scarce in healthy people but substantially increased in people with SLE.

People with lupus can experience a variety of symptoms, such as fatigue, joint pain, skin rashes and kidney problems. Levels of the DN2 cells were higher in people with more severe disease or kidney problems. DN2 B cells are thought to be "extra-follicular," which means they are outside the B cell follicles, regions of the lymph nodes where B cells are activated in an immune response.

"Overall, our model is that a lot of lupus auto-antibodies come from a continuous churning out of new responses," says Scott Jenks, Ph.D., co-first author of the paper. "There is good evidence that DN2 cells are part of the early B cell activation pathway happening outside B cells' normal homes in lymph nodes."

Previous research at Emory has shown that African American women have significantly higher rates of lupus than white women. In the current study, the researchers observed that the frequency of DN2 cells was greater in African American patients. Participants in the study were recruited by Emory, University of Rochester and Johns Hopkins.

Sanz, a Georgia Research Alliance Eminent Scholar, is director of the Lowance Center for Human Immunology and head of the division of rheumatology in the Department of Medicine at Emory University School of Medicine. Co-first authors are Jenks, postdoctoral fellow Kevin Cashman, Ph.D. and Esther Zumaquero-Martinez, Ph.D. at the University of Alabama. The lab of Frances Lund, Ph.D. at University of Alabama, as well as postdoc Urko Marigorta, Ph.D. from Georgia Tech contributed to the paper.

The researchers examined the characteristics of DN2 cells and the patterns of genes turned on in those cells. DN2 cells appear to be precursors to the plasmablasts that produce autoreactive antibodies, which cause so much trouble for people with lupus.

Plasmablasts are an important source of antibodies that help get rid of bacteria or viruses during an infection. But in lupus, subsets of B cells and plasmablasts persist in unhealthy ways. In general, we can think of plasmablasts as weapon factories, and B cells as a library of blueprints for various antibodies/weapons. Understanding where the problem plasmablasts come from can provide clues on how to target them and how to control the disease.

Molecular probing showed that DN2 cells in SLE patients are hypersensitive to activation through TLR7, a pathway by which the immune system senses viral infections. This may be how they get over-expanded, Jenks says.

"Our work provides further support for the importance for TLR7 in lupus pathology," he says. "Targeting TLR7 might both block the generation of pathological B cells and prevent their subsequent activation and differentiation into ."

Previous work in Sanz's lab had shown that a group of "activated naïve" B cells are precursors to the problem plasmablasts. Those cells are very similar, in their molecular markers, to DN2 cells. Jenks says the researchers are now figuring out the relationship between DN2 and activated naïve cells, as well as investigating additional intervention strategies that could specifically control those .

Explore further: Researchers decode lupus using DNA clues

More information: Scott A. Jenks et al, Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 Contribute to Pathogenic Responses in Systemic Lupus Erythematosus, Immunity (2018). DOI: 10.1016/j.immuni.2018.08.015

Related Stories

Researchers decode lupus using DNA clues

November 4, 2015
People with systemic lupus erythematosus can experience a variety of symptoms, such as fatigue, joint pain, skin rashes and kidney problems. Often the symptoms come and go in episodes called flares. In lupus, the immune system ...

Organs are not just bystanders, may be active participants in fighting autoimmune disease

September 24, 2018
Organs affected by autoimmune disease could be fighting back by "exhausting" immune cells that cause damage using methods similar to those used by cancer cells to escape detection, according to a study by researchers at the ...

How antiviral antibodies become part of immune memory

August 15, 2016
Weapons production first, research later. During wartime, governments follow these priorities, and so does the immune system.

Hypertension drugs could prevent memory loss in lupus patients, study suggests

September 5, 2018
Researchers from The Feinstein Institute for Medical Research have discovered that the activation of brain cells called microglia likely contributes to the memory loss and other cognitive impairments suffered by many patients ...

Enzyme keeps antibodies from targeting DNA and driving inflammation in lupus

June 9, 2016
Failure of an enzyme to break down DNA spilling into the bloodstream as cells die may be a major driver of inflammation in lupus. This is the finding of a study in both mice and human patients led by researchers at NYU Langone ...

Subset of plasma cells represent 'historical record' of childhood infections

July 15, 2015
Immunologists from Emory University have identified a distinct set of long-lived antibody-producing cells in the human bone marrow that function as an immune archive.

Recommended for you

HIV vaccine protects non-human primates from infection

December 14, 2018
For more than 20 years, scientists at Scripps Research have chipped away at the challenges of designing an HIV vaccine. Now new research, published in Immunity, shows that their experimental vaccine strategy works in non-human ...

RNA processing and antiviral immunity

December 14, 2018
The RIG-I like receptors (RLRs) are intracellular enzyme sentries that detect viral infection and initiate a first line of antiviral defense. The cellular molecules that activate RLRs in vivo are not clear.

The 'greying' of T cells: Scientists pinpoint metabolic pathway behind age-related immunity loss

December 13, 2018
The elderly suffer more serious complications from infections and benefit less from vaccination than the general population. Scientists have long known that a weakened immune system is to blame but the exact mechanisms behind ...

Scientists create most accurate tool yet developed to predict asthma in young children

December 13, 2018
Scientists at Cincinnati Children's Hospital Medical Center have created and tested a decision tool that appears to be the most accurate, non-invasive method yet developed to predict asthma in young children.

New genetic study could lead to better treatment of severe asthma

December 12, 2018
The largest-ever genetic study of people with moderate-to-severe asthma has revealed new insights into the underlying causes of the disease which could help improve its diagnosis and treatment.

Researchers discover unique immune cell likely drives chronic inflammation

December 11, 2018
For the first time, researchers have identified that an immune cell subset called gamma delta T cells that may be causing and/or perpetuating the systemic inflammation found in normal aging in the general geriatric population ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.