Stem cells control their own fate, making lab-grown tissues less effective

October 4, 2018 by Ryan O'hare, Imperial College London
Understanding how stem cells interact with their surroundings could lead to better lab-grown tissues. Credit: Imperial College London

Tissues grown in the lab from stem cells may fail to live up their therapeutic promise because the cells choose their own fate.

For the last 20 years, scientists have worked to engineer tissues for use in a range of conditions, such as osteoarthritis or heart failure. They do this by placing stem – those that can become any kind of cell – in biodegradable 3-D structures, or "scaffolds," in the laboratory.

However, lab-grown tissues often fail to be fully effective as treatments when transplanted into patients.

Now, researchers from King's College London, Imperial College London, University College London and the Francis Crick Institute, have uncovered that feedback between the cells and their may be the underlying factor, with the resulting signals altering the path the cells take as they grow and mature (their 'cell fate').

According to the team, the findings could help to improve the quality of lab-grown tissues, potentially improving outcomes for patients.

"Engineering tissues to replace damaged or diseased tissue could ultimately help patients with a variety of conditions, including cancer," said Dr. Holger Auner from the Department of Medicine, a blood cancer specialist and one of the Imperial College London authors on the paper. "We hope that this insight will also help us to study how interact with the tissue that surrounds them, which may lead to better therapies."

Altered instructions

When tissues are engineered in the lab, the 3-D scaffolds contain instructions to direct the stem cells inside how to differentiate – nudging them along the path from a 'blank' template capable of becoming multiple cells types, towards a final cell type – such as heart, lung or .

However, the latest study found that stem cells quickly modify their 3-D scaffold, changing both its composition and stiffness, rendering the instructive cues ineffective. The cells then rely on this new self-assembled matrix to direct their own differentiation, rather than cues from the scaffold they were originally placed within.

Writing in the journal Nature Communications, the researchers explain how human stem cells derived from the bone marrow responded to their surroundings as they developed.

Once placed within the 3-D scaffolds, the cells either secreted proteins around themselves, creating a stiff nest-like structure, or released factors that degrade and soften their surroundings.

It was these modifications that then told the stem cells how to differentiate, rather than just the initial cues from the scaffold, as designed.

The team's findings suggest that researchers will have to re-think how best to design 3-D scaffolds to create replacement tissues, as the scaffolds themselves may not directly instruct stem cells how to differentiate and form tissues.

"The positive side of this discovery is that now we know cells make these modifications and it impacts their fate," explained Dr. Eileen Gentleman of King's, who led the research.

"When we provide with a 3-D structure to help them form a tissue, we have to remember that they will modify the environment we present to them.

"To really coax them to form the we want, we have to find ways to harness this effect so that the local environment they create is one that will drive their differentiation down the correct path."

Explore further: Spare parts from small parts: Novel scaffolds to grow muscle

More information: Silvia A. Ferreira et al. Bi-directional cell-pericellular matrix interactions direct stem cell fate, Nature Communications (2018). DOI: 10.1038/s41467-018-06183-4

Related Stories

Spare parts from small parts: Novel scaffolds to grow muscle

February 20, 2018
Australian biomedical engineers have successfully produced a 3D material that mimics nature to transform cells into muscle.

3-D biomimetic scaffolds support regeneration of complex tissues from stem cells

January 10, 2013
Stem cells can be grown on biocompatible scaffolds to form complex tissues such as bone, cartilage, and muscle for repair and regeneration of damaged or diseased tissue. However, to function properly, the cells must often ...

Researchers use a single molecule to command stem cells to build new bone

August 31, 2016
Researchers at the University of California San Diego have discovered an easy and efficient way to coax human pluripotent stem cells to regenerate bone tissue—by feeding them adenosine, a naturally occurring molecule in ...

Recommended for you

Exercise-induced hormone irisin triggers bone remodeling in mice

December 13, 2018
Exercise has been touted to build bone mass, but exactly how it actually accomplishes this is a matter of debate. Now, researchers show that an exercise-induced hormone activates cells that are critical for bone remodeling ...

Law professor suggests a way to validate and integrate deep learning medical systems

December 13, 2018
University of Michigan professor W. Nicholson Price, who also has affiliations with Harvard Law School and the University of Copenhagen Faculty of Law, suggests in a Focus piece published in Science Translational Medicine, ...

Pain: Perception and motor impulses arise in brain independently of one another

December 13, 2018
Pain is a negative sensation that we want to get rid of as soon as possible. In order to protect our bodies, we react by withdrawing the hand from heat, for example. This action is usually understood as the consequence of ...

Faster test for Ebola shows promising results in field trials

December 13, 2018
A team of researchers with members from the U.S., Senegal and Guinea, in cooperation with Becton, Dickinson and Company (BD), has developed a faster test for the Ebola virus than those currently in use. In their paper published ...

Drug targets for Ebola, Dengue, and Zika viruses found in lab study

December 13, 2018
No drugs are currently available to treat Ebola, Dengue, or Zika viruses, which infect millions of people every year and result in severe illness, birth defects, and even death. New research from the Gladstone Institutes ...

Researchers give new insight to muscular dystrophy patients

December 13, 2018
New research by University of Minnesota scientists has revealed the three-dimensional structure of the DUX4 protein, which is responsible for the disease, facioscapulohumeral muscular dystrophy (FSHD). Unlike the majority ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Spaced out Engineer
not rated yet Oct 04, 2018
Stem cells, apply directly to the person. Who needs a controlled environment when we can harvest people as labs in socialized medicine?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.