Focus on resistance to HIV offers insight into how to fight the virus

November 30, 2018, University of Montreal
Credit: CC0 Public Domain

Of the 40 million people around the world infected with HIV, less than one per cent have immune systems strong enough to suppress the virus for extended periods of time. These special immune systems are known as "elite controllers." But how do they actually fight HIV? Canadian scientists think they've found an important clue.

Working in collaboration with a team from the Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), researchers at the Laboratory of Antiviral Immunity of Université du Québec à Trois-Rivières (UQTR) have found that affecting the , the structure surrounding the HIV genome, make it possible for a protein called TRIM5α to trigger the immune system of elite controllers.

This discovery, recently published in PLOS Pathogens, sheds light on the role that TRIM5α plays in the human body. In elite controllers, the protein sets off a mechanism that protects against HIV-1, the type of HIV responsible for the global pandemic. "In most infected individuals, TRIM5α's triggering ability is so weak that it has no effect on the virus, but in elite controllers, TRIM5α seems to play a role in naturally inhibiting HIV-1," said lead author Natacha Mérindol, a at the UQTR lab.

There is no vaccine or cure for HIV-1. That's why it's important to understand why the virus is naturally inhibited in elite controllers, said Mérindol, who works under the direction of UQTR medical biology professor Lionel Berthoux, head of the lab, and Dr.Cécile Tremblay, a professor at Université de Montréal's Faculty of Medicine and a clinical researcher at CRCHUM.

Different from the vast majority

Elite controllers are HIV-infected people whose immune system performs better at fighting HIV-1 than in the vast majority of HIV . They are infected with the virus, but the infection is much weaker than usual. "They have very strong immune systems that can control the infection – it's as if they were receiving treatment, even when they aren't," said Mérindol.

"Our HIV-positive patients played an essential role in making this research possible and we would like to thank them for their incredible generosity and availability," said Tremblay, a microbiologist and infectious disease specialist at the CHUM. "It's an important study that could advance research on HIV vaccines."

"Thanks to the dedicated patients and researchers from different universities, we were able to learn more and advance the fight against HIV," added Mohamed El-Far, a fellow researcher at CRCHUM.

Studies had previously suggested that TRIM5α helps protect against HIV-1, prompting the researchers to analyze the virus found in many elite-controller patients who are part of the Canadian Cohort of HIV+ Slow Progressors, a group administered by the Fonds de Recherche du Québec – Santé's AIDS and Infectious Disease Network (FRQS-SIDA/MI). The researchers compared blood samples of patients from two cohorts (elite controllers and normal progressors) who weren't undergoing retroviral treatment.

TRIM5α: under the microscope

"Our goal was to examine a specific part of the virus: the capsid – it's the 'virus coat,' which determines sensitivity to TRIM5α," explained Berthoux, who directed the study. The capsid's role is to protect the virus's ribonucleic acid (RNA), which holds its genetic information, but the body's attacks it through a variety of mechanisms.

Those attacks lead to mutations that help them escape some of the immune mechanisms involved. The research team observed that the capsid's gene carries a high number of mutations, but that these mutations made HIV-1 sensitive to TRIM5α activity, leading the team to wonder about the effects of a TRIM5α attack on the capsid in .

They found that, in these patients, the interaction between TRIM5α and the capsid triggers an antiviral state that reduces cellular sensitivity to HIV-1. The signal sent by TRIM5α is strong enough for the cell to become resistant in this subset of the patient population, whereas TRIM5α's signal is not as effective in normal patients.

This mechanism could be used to develop immunity strategies that inhibit HIV-1. One possible therapeutic strategy would be to genetically modify TRIM5α to increase its triggering ability, which would ultimately protect people from HIV. Since TRIM5α's activation capacity is too weak in normal patients, this would mean mutating TRIM5α to increase its capacity to target HIV-1, which would therefore reduce the capacity of HIV-1 to propagate in the patient.

Explore further: Patients with rare natural ability to suppress HIV shed light on potential functional cure

More information: Natacha Merindol et al. HIV-1 capsids from B27/B57+ elite controllers escape Mx2 but are targeted by TRIM5α, leading to the induction of an antiviral state, PLOS Pathogens (2018). DOI: 10.1371/journal.ppat.1007398

Related Stories

Patients with rare natural ability to suppress HIV shed light on potential functional cure

November 27, 2018
Researchers at Johns Hopkins have identified two patients with HIV whose immune cells behave differently than others with the virus and actually appear to help control viral load even years after infection. Moreover, both ...

Dendritic cells of elite controllers able to recognize, mount defense against HIV

June 11, 2015
Investigators from Massachusetts General Hospital (MGH) and the Ragon Institute of MGH, MIT and Harvard have added another piece to the puzzle of how a small group of individuals known as elite controllers are able to control ...

Research reveals details of how HIV becomes infectious

November 13, 2018
HIV, the virus that causes AIDS, has been studied extensively ever since the AIDS epidemic was officially recognized by health professionals in the early 1980s.

Antibody combination puts HIV on the ropes

January 25, 2017
Without antiretroviral drug treatment, the majority of people infected with HIV ultimately develop AIDS, as the virus changes and evolves beyond the body's ability to control it. But a small group of infected individuals—called ...

HIV: Identification of receptors in patients spontaneously controlling infection

May 18, 2016
A small number of patients infected by HIV spontaneously control viral replication without antiretroviral therapy, and do not develop the disease. The ability of these rare patients, known as "HIV controllers", to suppress ...

Recommended for you

HIV vaccine protects non-human primates from infection

December 14, 2018
For more than 20 years, scientists at Scripps Research have chipped away at the challenges of designing an HIV vaccine. Now new research, published in Immunity, shows that their experimental vaccine strategy works in non-human ...

Roadmap reveals shortcut to recreate key HIV antibody for vaccines

December 11, 2018
HIV evades the body's immune defenses through a multitude of mutations, and antibodies produced by the host's immune system to fight HIV also follow convoluted evolutionary pathways that have been challenging to track.

Eliminating the latent reservoir of HIV

December 7, 2018
A new study suggests that a genetic switch that causes latent HIV inside cells to begin to replicate can be manipulated to completely eradicate the virus from the human body. Cells harboring latent HIV are "invisible" to ...

New research highlights why HIV-infected patients suffer higher rates of cancer

December 5, 2018
AIDS patients suffer higher rates of cancer because they have fewer T-cells in their bodies to fight disease. But new research examines why HIV-infected patients have higher rates of cancer—among the leading causes of death ...

Focus on resistance to HIV offers insight into how to fight the virus

November 30, 2018
Of the 40 million people around the world infected with HIV, less than one per cent have immune systems strong enough to suppress the virus for extended periods of time. These special immune systems are known as "elite controllers." ...

Scientists unveil promising new HIV vaccine strategy

November 26, 2018
A new candidate HIV vaccine from Scripps Research surmounts technical hurdles that stymied previous vaccine efforts, and stimulates a powerful anti-HIV antibody response in animal tests.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Anonym518498
1 / 5 (2) Nov 30, 2018
to fight it you could just keep your pants on

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.