Multiple sclerosis: Accumulation of B cells triggers nervous system damage

November 9, 2018, Technical University Munich
Prof. Thomas Korn investigates the role of B cells during Multiple Sclerosis. Credit: M. Jooss / TUM

B cells are important in helping the immune system fight pathogens. However, in the case of the neurological autoimmune disease multiple sclerosis (MS), they can damage nerve tissue. When particular control cells are missing, too many B cells accumulate in the meninges, resulting in inflammation of the central nervous system. A team from the Technical University of Munich (TUM) demonstrated the process using animal and patient samples.

The fight against illnesses and pathogens requires activation or deactivation of a large number of cell types in the immune system at the right place and the right time. In recent years, certain immune cells, the (MDSCs), have received increasing attention in this context. They function as an important control mechanism in the immune system and ensure that immunoreactions do not become too strong.

Impacts of the loss of control

In the case of MS, these controls in the nervous system appear to fail in part. The team led by Thomas Korn, professor for experimental neuroimmunology at the TUM Neurology Clinic, succeeded in demonstrating this in a study published in the journal Nature Immunology. During MS, the body attacks its own , resulting in damage and inflammation. This can lead to paralysis, as well as vision and movement disorders.

"We were primarily interested in the control effect of the MDSCs on the B cells. Their function in the occurrence of MS is not yet clear. But they appear to play an important role, something we wanted to take a closer look at," says Korn, explaining the study's objective. B cells can develop into cells that produce antibodies, but they can also activate other immune cells by secreting immune messengers. Korn and his team used a mouse model in which the inflammatory disease can be triggered and develops much the same way as in the human body.

MDSCs influence the B cell count

The team removed the MDSCs from the meningeal tissue and then observed an increase in the accumulation of B cells there. At the same time, inflammation and damage occurred, triggered by the high number of B cells in the nerve tissue. This phenomenon did not occur when enough MDSCs were present, controlling the number of B cells.

In the future, Korn and his team want to explain how the B cells destroy the nervous system. According to the researcher, there are two possibilities: In the meninges, B cells emit substances that attract immune cells, which incorrectly destroy the body's own tissues; or B cells activate in the blood and lymph systems, which then move to the meninges, where they cause damage.

Based on 25 tests of the cerebrospinal fluid (CSF) of subjects with MS, the lack of MDSCs could also have a negative effect on the course of the illness in patients. When the researchers found large numbers of MDSCs in CSF, the patients usually also experienced milder symptoms with fewer episodes of inflammation. In contrast, patients with lower MDSC counts experienced stronger symptoms. "There are already approved therapies in which B are regulated and suppressed on a medicinal basis. Now, we've provided an explanation of why this could be an effective treatment, at least in cases where the course of the disease is poor," says Korn. Since the number of subjects tested in this case was small, he and his team are planning larger patient studies for the future.

Explore further: Immune cells in triple-negative breast cancer offer potential therapeutic target

More information: Benjamin Knier et al, Myeloid-derived suppressor cells control B cell accumulation in the central nervous system during autoimmunity, Nature Immunology (2018). DOI: 10.1038/s41590-018-0237-5

Related Stories

Immune cells in triple-negative breast cancer offer potential therapeutic target

October 11, 2018
About 15 percent of breast cancers are classified as triple-negative, lacking receptors for estrogen, progesterone, and Her2. These cancers do not respond to targeted hormonal therapies, and they tend to be particularly aggressive, ...

B cells among factors leading to brain lesions in multiple sclerosis

September 4, 2018
A team of researchers from the University of Zurich and the University Hospital Zurich has shown that in multiple sclerosis it is not only specific T cells that cause inflammation and lesions in the brain. B cells, a different ...

Soluble antibodies play immune suppressive role in tumor progression

April 12, 2018
Wistar researchers have found that soluble antibodies promote tumor progression by inducing accumulation of myeloid-derived suppressor cells (MDSCs) in pre-clinical cancer models. Results were published online in Cancer Immunology ...

Can myeloid derived suppressor cells subdue viral infections?

January 26, 2017
Myeloid derived suppressor cells (MDSCs), produced in the bone marrow as part of the human immune response to a tumor, may have a potent immunoregulatory role following viral infection. The similarities and differences between ...

Scientists identify marker for myeloid-derived suppressor cells

August 5, 2016
Myeloid-derived suppressor cells (MDSCs) are a population of immune cells that have been implicated in tumor resistance to various types of cancer treatment, including targeted therapies, chemotherapy and immunotherapy. Polymorphonuclear ...

Enhancing immune checkpoint inhibitor therapy using treatment combination

September 5, 2018
A combination of a novel inhibitor of the protein CK2 (Casein kinase 2) and an immune checkpoint inhibitor has dramatically greater antitumor activity than either inhibitor alone, according to research from The Wistar Institute ...

Recommended for you

Cell study reveals how head injuries lead to serious brain diseases

November 16, 2018
UCLA biologists have discovered how head injuries adversely affect individual cells and genes that can lead to serious brain disorders. The life scientists provide the first cell "atlas" of the hippocampus—the part of the ...

A gut bacterium as a fountain of youth? Well, let's start with reversing insulin resistance

November 16, 2018
Move over Bifidobacterium and Lactobacillus. There's a new health-promoting gut bacterium in town, and it's called Akkermansia muciniphila.

Newborn babies' brain responses to being touched on the face measured for the first time

November 16, 2018
A newborn baby's brain responds to being touched on the face, according to new research co-led by UCL.

New inflammation inhibitor discovered

November 16, 2018
A multidisciplinary team of researchers led from Karolinska Institutet in Sweden have developed an anti-inflammatory drug molecule with a new mechanism of action. By inhibiting a certain protein, the researchers were able ...

Pets can double as asthma antidote

November 16, 2018
(HealthDay)—The "hygiene hypothesis" holds that early exposure to a variety of microorganisms may decrease the risk for chronic inflammatory diseases, like asthma.

New study shows NKT cell subsets play a large role in the advancement of NAFLD

November 16, 2018
Since 2015 it has been known that the gut microbiota could have a direct impact on nonalcoholic fatty liver disease (NAFLD), which affects up to 12% of adults and is a leading cause of chronic liver disease. In the November ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.