Detecting signs of neurodegeneration earlier and more accurately

November 30, 2018, Polish Academy of Sciences
The new fluorescent dye can be tailored to bind with specific polymorphic forms of insulin amyloid complexes. Credit: IPC PAS, Grzegorz Krzyzewski

Signs of neurodegenerative diseases, appearing years before the emergence of clinical manifestations, can be detected during the examination of medical samples by means of fluorescence microscopy by using new sensitive and selective dyes that bind to specific amyloid structures. The new dye, proposed by the Polish-American group of scientists, is a step toward personalized neuromedical treatment of the future. These avenues of detection are being opened thanks to the achievements of a Polish-American team, which includes scientists from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw, Wroclaw University of Technology, the University of Michigan and the University of California, Santa Barbara.

Memory disorders, Creutzfeldt-Jakob , and Alzheimer's disease are among those related to the formation of amyloid fibril deposits of complex shapes. Researchers believe that the first signs of neurodegeneration could be identifiable in medical laboratories at an earlier stage of development, and in a much more precise way than ever before.

With the aging of society, the importance of early detection of neurodegenerative diseases, usually manifesting in people at a later age, is growing. The stakes are high—just from looking at the data on Alzheimer's disease. While just 3 percent of people over 70 years of age suffer from the disease, as many as half of the population suffers after the age of 90. It is known, however, that this disease probably begins even 20 years before the onset of its first symptoms. In this situation, the early and precise detection of its harbingers takes on a particular significance.

"Before a lab technician examines a sample of a patient's under a fluorescence microscope, he must somehow label the required chemicals with a . For this purpose, researchers use small fluorescent molecular tags that bind with the molecules they want to detect. The study proposes using the polythiophene derivative PTEBS as the dye. This is a polymer, quite a large atomic structure. In practice, molecules the size of PTEBS have quite a significant advantage," says Dr. Piotr Hanczyc of the Faculty of Physics, University of Warsaw), the first author of the publication in the September print issue of the Journal of Luminescence.

The PTEBS dye should help in the earlier detection of neurodegenerative diseases. Credit: IPC PAS, Grzegorz Krzyzewski

The team's research has made it possible to conclude that the presence of both the required chemical molecules as well as their aggregates can be recorded using the PTEBS dye, even when they are present in the sample at significantly lower concentrations than detected by thioflavin T, currently one of the most popular fluorescent dyes used for labelling protein aggregates.

An important advantage of the new dye is related to the existence of polymorphic forms of amyloid, i.e. the fact that while one configuration of atoms in a molecule may be responsible for triggering neurodegenerative processes, the another can turn out to be harmless.

"Standard dyes are molecules of a small size. You cannot do too much with them. In addition, they have been thoroughly tested and a lot is already known about them. The molecules of our dye are large, and many substituent groups are attached to the main chain. These groups can be modified and extended to a large extent, increasing the affinity of the dye not only to the selected form of , but also to its specific polymorph. This gives us a lot to work with," says Dr. Hanczyc.

The new dye could more precisely determine the polymorphic variations responsible for the course of neurodegenerative processes in patients. However, its applications in preventive examinations are particularly promising. They would allow for the selection of more effective treatment strategies, personalized for a particular patient. This sort of procedure would mean that it would be possible to significantly delay the development of and possibly even completely prevent them in the future.

Explore further: Molecule capable of halting and reverting neurodegeneration caused by Parkinson's disease identified

More information: P. Hanczyc et al, Surface patterns of insulin fibrils revealed by time-resolved spectroscopy measurements of fluorescent probes, Journal of Luminescence (2018). DOI: 10.1016/j.jlumin.2018.03.038

Related Stories

Molecule capable of halting and reverting neurodegeneration caused by Parkinson's disease identified

September 25, 2018
The small SynuClean-D molecule interrupts the formation of the alpha-synuclein amyloid fibres responsible for the onset of Parkinson's disease, and reverts the neurodegeneration caused by the disease. The study, headed by ...

Researchers identify new potential biotherapy for Alzheimer's disease

August 29, 2018
Researchers at the University of Florida have discovered that a modified version of an important immune cell protein could be used to treat Alzheimer's disease. The study, which will be published August 29 in the Journal ...

Protein research could help in hunt for Alzheimer's and Parkinson's cures

September 11, 2017
Research carried out at the University of Kent has the potential to influence the future search for treatment of neurodegenerative diseases that are linked to a family of protein molecules known as 'amyloid'.

Researchers get a lead on how to detect degenerative neurological diseases sooner

September 29, 2017
Researchers at The Scripps Research Institute (TSRI) may have found a way to help doctors diagnose diseases like Alzheimer's and Parkinson's earlier in their progression. A special peptide probe being developed in Jeffery ...

Recommended for you

Wiring diagram of the brain provides a clearer picture of brain scan data

December 14, 2018
Already affecting more than five million Americans older than 65, Alzheimer's disease is on the rise and expected to impact more than 13 million people by 2050. Over the last three decades, researchers have relied on neuroimaging—brain ...

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

Does diabetes damage brain health?

December 14, 2018
(HealthDay)—Diabetes has been tied to a number of complications such as kidney disease, but new research has found that older people with type 2 diabetes can also have more difficulties with thinking and memory.

Parents' brain activity 'echoes' their infant's brain activity when they play together

December 13, 2018
When infants are playing with objects, their early attempts to pay attention to things are accompanied by bursts of high-frequency activity in their brain. But what happens when parents play together with them? New research, ...

In the developing brain, scientists find roots of neuropsychiatric diseases

December 13, 2018
The most comprehensive genomic analysis of the human brain ever undertaken has revealed new insights into the changes it undergoes through development, how it varies among individuals, and the roots of neuropsychiatric illnesses ...

Researchers discover abundant source for neuronal cells

December 13, 2018
USC researchers seeking a way to study genetic activity associated with psychiatric disorders have discovered an abundant source of human cells—the nose.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.