Investigators discover compounds that block reactivation of latent HIV-1

December 3, 2018, American Society for Microbiology

A team of investigators from the University of Pittsburgh has identified compounds that block the reactivation of latent HIV-1 in a human cell line containing the latent virus. The research is published December 3rd in Antimicrobial Agents and Chemotherapy, a journal of the American Society for Microbiology.

The compounds the researchers tested came from a library of 418 different " inhibitors." Kinases target a wide range of signaling pathways within cells, regulating critical cellular functions such as DNA transcription and translation, and cellular metabolism. These pathways apparently include ones that can reverse latency of HIV-1 virus that has become integrated into the human genome. Thus, the research could lead to ways to permanently suppress HIV infections, said Benni E. Vargas, a Ph.D. student in Microbiology and Immunology at the University of Pittsburgh School of Medicine

The researchers had infected the cell line with HIV-1 that then became dormant within the cells. The virus contained a "reporter gene," which would light up during reactivation so that the investigators would know if reactivation occurred. The were then given an HIV-1 activating small molecule compound, and each culture was exposed to one of the 418 different kinase inhibitors.

"There's a need to understand the mechanisms and signaling pathways by which the regulates HIV-1 latency and reactivation," said Mr. Vargas. "What better way to identify these host signaling pathways than to screen a whole library of drugs that target different parts of the host signaling pathway?"

A potential downside of the kinase inhibitors is possible toxicity to human cells, said Mr. Vargas. The investigators gauged toxicity by measuring cellular production of ATP, a compound manufactured in which functions as cellular fuel, within the tiny cellular motors, the mitochondria. A notable reduction in the quantity of ATP, as present, as compared to normal, would indicate toxicity, said Mr. Vargas. Twelve kinase inhibitors blocked reactivation irrespective of latency reversing agent, and two of these did so with minimal toxicity.

The for the research was that several other groups had previously identified inhibitors of kinases that block reactivation of the dormant HIV-1 provirus, said Mr. Vargas.

Explore further: Scientists advance understanding of herpesvirus infection

Related Stories

Scientists advance understanding of herpesvirus infection

April 12, 2017
Herpes simplex virus (HSV) infections last a lifetime. Once a person has been infected, the virus can remain dormant (latent) for years before periodically reactivating to cause recurrent disease. This poorly understood cycle ...

Study challenges 'shock and kill' approach to eliminating HIV

May 1, 2018
Researchers have provided new insight into the cellular processes behind the 'shock and kill' approach to curing HIV, which they say challenges the effectiveness of the treatment.

Kicking latent HIV: New strategies to reactivate reservoirs of latent infection

July 30, 2015
In cells with latent HIV infection, the virus is dormant, and such cells are therefore not attacked by the immune system or by standard antiretroviral therapy. To eradicate the virus from the human body and truly cure a patient, ...

Identification of drug combinations that reverse HIV-1 latency

March 30, 2015
There are almost 40 million people throughout the world living with HIV-1/AIDs. While current antiretroviral therapies are able to reduce the amount of virus in the blood, HIV remains present in a latent state within T cells. ...

Combination therapies for drug-resistant cancers

October 10, 2011
Some cancers can be effectively treated with drugs inhibiting proteins known as receptor tyrosine kinases, but not those cancers caused by mutations in the KRAS gene. A team of researchers led by Jeffrey Engelman, at Massachusetts ...

Epigenetic drugs show promise as antivirals

August 15, 2017
Some epigenetic pharmaceuticals have the potential to be used as broad spectrum antivirals, according to a study reported in a recent issue of the journal mBio. The study demonstrated that histone methyltransferases EZH2/1 ...

Recommended for you

HIV vaccine protects non-human primates from infection

December 14, 2018
For more than 20 years, scientists at Scripps Research have chipped away at the challenges of designing an HIV vaccine. Now new research, published in Immunity, shows that their experimental vaccine strategy works in non-human ...

Roadmap reveals shortcut to recreate key HIV antibody for vaccines

December 11, 2018
HIV evades the body's immune defenses through a multitude of mutations, and antibodies produced by the host's immune system to fight HIV also follow convoluted evolutionary pathways that have been challenging to track.

Eliminating the latent reservoir of HIV

December 7, 2018
A new study suggests that a genetic switch that causes latent HIV inside cells to begin to replicate can be manipulated to completely eradicate the virus from the human body. Cells harboring latent HIV are "invisible" to ...

New research highlights why HIV-infected patients suffer higher rates of cancer

December 5, 2018
AIDS patients suffer higher rates of cancer because they have fewer T-cells in their bodies to fight disease. But new research examines why HIV-infected patients have higher rates of cancer—among the leading causes of death ...

Focus on resistance to HIV offers insight into how to fight the virus

November 30, 2018
Of the 40 million people around the world infected with HIV, less than one per cent have immune systems strong enough to suppress the virus for extended periods of time. These special immune systems are known as "elite controllers." ...

Patients with rare natural ability to suppress HIV shed light on potential functional cure

November 27, 2018
Researchers at Johns Hopkins have identified two patients with HIV whose immune cells behave differently than others with the virus and actually appear to help control viral load even years after infection. Moreover, both ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.