Scientists discover a cellular and molecular mechanism that promotes vascular arterialization

A new way to make arteries
Confocal microscopy projection image of a mouse heart in which a multispectral genetic mosaic was induced in coronary vessels. This novel genetic and imaging technology was used to label and fate map individual coronary endothelial cells containing distinct genetic mutations. These mutations either impair or promote cell-cycle progression, determining the arterial or venous fate of endothelial cells. To form arteries, cells need to lower their metabolism and exit the cell-cycle (G0). Credit: CNIC

Research carried out by scientists at the Centro Nacional de Investigaciones Cardiovasculares (CNIC) advances the understanding of the biology of blood vessels, and points the way to the design of new therapeutic strategies to induce vascularization and more effective blood perfusion of injured or ischemic tissues.

The study, led by Rui Benedito and published in Nature, reveals a new cellular and molecular mechanism essential for the development of from blood capillaries, a process called arterialization. Activation of this mechanism could improve the recovery of heart function after transient or long term reduction in heart blood flow.

Until now, vascular arterialization was believed to depend on the differentiation and specification of a progenitor cell into an arterial cell, a process thought to require transcriptional activation and DNA remodeling. The new discovery shows that arterialization involves instead the timely suppression of metabolism and the , and that this event is both necessary and sufficient to trigger the differentiation and development of arteries.

In the past 20 years, scientists have discovered several cellular and molecular mechanisms that are essential for the formation and differentiation of arteries and veins. The first blood vessels to develop in any growing organ are immature and form an undifferentiated and rudimentary vascular network called a precursor vascular plexus. This network is formed from and is relatively inefficient at transporting blood. It can be likened to a road network built for local traffic but lacking a system of larger connecting highways.

The formation of a hierarchical vascular system composed of larger conduction arteries and veins is therefore essential for the efficient transport of blood to and from tissues. "The incorrect development of this system causes premature embryonic death or potentially fatal diseases linked to that can cause stroke, poor oxygen supply or inadequate tissue perfusion," explained the study authors.

A new way to make arteries. Credit: CNIC

Initiation of correct arterial specification requires the activation of two genetic pathways: the VEGF and the Notch signaling pathway. "Notch is a molecular signaling pathway that directly regulates the transcription of an immense array of genes that alter a cell's biology. When Notch is not activated in endothelial cells, arterial specification and development fails, remaining only capillary and venous endothelial cells," said Rui Benedito.

This led to the view that arteries are built through the induction of a highly conserved, Notch-dependent program of genetic change in a subset of endothelial cells. This genetic program was thought to be essential for the capacity of endothelial cells to differentiate, migrate, and form arteries.

Using sophisticated mouse models, cell imaging and fate mapping tools, Rui Benedito's group has now discovered that cells with distinct Notch signaling levels are biased towards a particular fate, but not genetically pre-determined, as they can adopt distinct arteriovenous fates if placed in the appropriate biophysical context.

First author Wen Luo found that the main function of VEGF and Notch in arterializing endothelial cells is to inhibit Myc, suppressing its ability to promote cell proliferation and metabolism. The study shows that Myc inhibition is necessary and sufficient to induce an effective bias towards arterialization.

The results also have important implications for the use of drugs to boost angiogenesis in ischemic cardiovascular disease. The study suggests that pro-angiogenic drugs that stimulate general blood vessel proliferation will suppress arterialization. "One of our future goals will be to identify new ways to supress proliferation signals exclusively in pre-arterial , thereby promoting effective arterialization without negatively interfering with the induction of capillary angiogenesis," said Rui Benedito.

From a translational standpoint, the authors conclude that the ability to modulate arterial or venous identity of vessels is of great interest for the treatment of coronary artery disease and myocardial infarction. The results obtained could lead to novel therapeutic approaches to induce effective arterialization in ischemic cardiovascular disease.


Explore further

A newly identified mechanism can be targeted to boost angiogenesis

More information: Arterialization requires the timely suppression of cell growth, Nature (2020). DOI: 10.1038/s41586-020-3018-x , www.nature.com/articles/s41586-020-3018-x
Journal information: Nature

Provided by Centro Nacional de Investigaciones Cardiovasculares Carlos III (F.S.P.)
Citation: Scientists discover a cellular and molecular mechanism that promotes vascular arterialization (2020, December 9) retrieved 28 October 2021 from https://medicalxpress.com/news/2020-12-scientists-cellular-molecular-mechanism-vascular.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
44 shares

Feedback to editors