This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:


trusted source


New insights into how RNA modification promotes pancreatic cancer

New Insights Into How RNA Modification Promotes Pancreatic Cancer
LINC00901 regulates MYC signaling pathway. Credit: Genes & Diseases (2022). DOI: 10.1016/j.gendis.2022.02.014

Chemical modifications of RNA molecules, such as m6A, can critically impact gene expression, influencing various aspects of cancer development and progression. However, while studies into m6A modification of messenger RNA (mRNA) have been extensive, exploration of its impact on lncRNAs, especially within the context of PDAC, has been relatively limited.

In an innovative study published in the Genes & Diseases journal, a team from the The Children's Hospital, Zhejiang University School of Medicine, People's Hospital of Hangzhou Medical College and University of Mississippi Medical Center employed a methylated RNA immunoprecipitation (MeRIP) strategy to uncover the role of LINC00901, an m6A-modified long noncoding RNA (lncRNA), in promoting the proliferation, survival, and invasiveness of pancreatic ductal adenocarcinoma (PDAC) cells, thus leading to .

Intriguingly, the study suggests that the m6A reader protein YTHDF1 negatively regulates LINC00901 expression. The team identified two m6A sites on LINC00901 essential for its interaction with YTHDF1. Their function was underscored when mutations at these sites reduced interaction, thereby emphasizing the significance of m6A modification in LINC00901's oncogenic role. The study further unveils a critical LINC00901-IGF2BP2-MYC axis, driving PDAC progression in an m6A-dependent manner, thereby illuminating a potential new therapeutic target.

The researchers suggest the m6A machinery as a promising therapeutic avenue, hinting at the potential for improved patient response to treatment through combining a checkpoint inhibitor with YTHDF1 deficiency. Moreover, with m6A modification implicated in the regulation of both innate and adaptive immune cells, the possibility of developing immunotherapies targeting this pathway emerges.

This study marks a significant advancement in understanding how RNA modifications such as m6A impact and contribute to cancer development. These findings offer fresh insights into the role of m6A modification in lncRNA in the context of PDAC, enhancing our understanding of the disease's progression and opening up potential new pathways for treatment. By exploring this RNA modification, the research expands the horizon of possibilities for targeted cancer therapies.

More information: Wan-Xin Peng et al, N6-methyladenosine modified LINC00901 promotes pancreatic cancer progression through IGF2BP2/MYC axis, Genes & Diseases (2022). DOI: 10.1016/j.gendis.2022.02.014

Citation: New insights into how RNA modification promotes pancreatic cancer (2023, August 3) retrieved 10 December 2023 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

HER3: A key survival pathway and therapeutic target in metastatic colorectal and pancreatic cancer


Feedback to editors