Natural method for clearing cellular debris provides new targets for lupus treatment

February 24, 2012

Cells that die naturally generate a lot of internal debris that can trigger the immune system to attack the body, leading to diseases such as lupus.

Now Georgia Health Sciences University researchers report that an enzyme known to help keep a woman's immune system from attacking a fetus also helps block development of these autoimmune diseases that target healthy tissues, such as DNA or joints.

The findings point toward new for , which are on the rise in light of a germ-conscious society that regularly destroys many of the previously pervasive microbes that made the immune system more tolerant.

"The basic premise of lupus is you have lost normal tolerance to yourself, your own proteins and DNA," said Dr. Tracy L. McGaha, GHSU and corresponding author of the study published in .

They found that IDO, or indoleomine 2,3-dioxegenase, helps promote tolerance to debris generated by natural and that when IDO is removed from the mix, the debris spurs an immune response that can trigger autoimmune disease. In mice genetically programmed to develop lupus, blocking IDO resulted in earlier, more .

"This connects IDO and macrophages. It's a newly described role for IDO in regulation of tolerance toward self," McGaha said. Consequently, increasing IDO production or its downstream effects might be a way to regain lost tolerance, he said.

They studied activity in the , a hard-working immune organ, that constantly filters blood. In a perfectly orchestrated defense, the entrance to the spleen is surrounded by that scour blood for viruses, bacteria, even fat and cholesterol floating by.

A nearby subset of macrophages, which are essentially , then capture and consume the undesirables, McGaha said. Interestingly, a lot of what macrophages consume is dead immune cells.

Macrophages also appear to help keep the peace by preventing the immune system from joining the fray. McGaha earlier found that if he destroyed macrophages, then fed the spleen dead cells, there was inflammation instead of calm. "That tells us there is something inherent in this subset of macrophages that is important for the suppressive process," McGaha said referencing the paper published in 2011 in the journal Blood.

The new paper shows IDO is part of that "something." Efficient elimination of cell debris while keeping nearby immune cells quiet is important because some debris is known to grab the attention of the immune system, McGaha said. He noted that it's normal – and healthy – for damaged cells to become targets.

"We are really interested in this process of normal cell debris removal because in lupus, it's thought to be one of the main drivers of inflammation," he said.

The immune system has points of expansion and regulation where it decides whether or not to act. Knowing key points, such as IDO's regulatory role, provides treatment targets that can interrupt a destructive cascade of immune activity, McGaha said. Previous studies have shown evidence of self-attack is present many years before disease symptoms appear, he said.

Environmental assaults, such as a bad sunburn, can be the initial trigger of the abnormal in diseases like lupus. In healthy individuals, the immune system rises to the occasion of an infection then goes back to baseline. In autoimmune disease, patients tend not to return to normal levels.

GHSU's Drs. Andrew Mellor and David Munn reported in 1998 in the journal Science that the fetus expresses IDO to help avoid rejection by the mother's immune system. Subsequent studies have shown tumors also use it and that it could help transplanted organs escape rejection. They suggested that McGaha look at IDO as a regulatory mechanism used by .

Explore further: Newest cancer therapies multi-task to eliminate tumors

Related Stories

Recommended for you

Snapshot turns T cell immunology on its head

October 6, 2015

Challenging a universally accepted, longstanding consensus in the field of immunity requires hard evidence. New research from the Australian Research Council Centre of excellence in advanced Molecular imaging has shown the ...

Four gut bacteria decrease asthma risk in infants

September 30, 2015

New research by scientists at UBC and BC Children's Hospital finds that infants can be protected from getting asthma if they acquire four types of gut bacteria by three months of age. More than 300 families from across Canada ...

Flu infection reveals many paths to immune response

September 28, 2015

A new study of influenza infection in an animal model broadens understanding of how the immune system responds to flu virus, showing that the process is more dynamic than usually described, engaging a broader array of biological ...

Immune cells may help fight against obesity

September 15, 2015

While a healthy lifestyle and "good genes" are known to help prevent obesity, new research published on September 15 in Immunity indicates that certain aspects of the immune system may also play an important role. In the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.