Researchers descover melanoma-promoting gene

July 10, 2012
The stem-cell factor Sox10 (red) is active in the tumor tissue of melanoma patients and essential for the development and spread of cancer.

Black skin cancer, also known as melanoma, is particularly aggressive and becoming increasingly common in Switzerland. Despite intensive research, however, there is still no treatment. Researchers from the University of Zurich have now discovered a gene that plays a central role in black skin cancer. Suppressing this gene in mice inhibits the development of melanoma and its proliferation – a discovery that could pave the way for new forms of therapy.   

Until recently, it was assumed that a was composed of many equivalent cells that all multiply malignantly and can thus contribute towards tumor growth. According to a more recent hypothesis, however, a tumor might also consist of malignant cancer and other less aggressive tumor cells. Normally, stem cells are responsible for the formation of organs. Cancer stem cells can divide in a very similar way and develop into other tumor cells to form the tumor. Efficient tumor therapy thus primarily needs to fight cancer stem cells. Consequently, a team of stem-cell researchers from the University of Zurich headed by Professor Sommer decided to find out whether mechanisms that are important for normal stem cells also play a role in cancer stem cells.  

Melanoma cells are rogue skin-pigment cells formed by so-called neural crest stem cells during embryonic development. Professor Sommer’s group teamed up with dermatologists and pathologists to investigate whether cells with characteristics of these specific stem cells are present in human tumor tissue. “This was indeed the case, as we were able to prove based on numerous biopsies performed on melanoma patients,” says Sommer. In particular, one gene that effectively controls the stem-cell program was highly active in all the tumor tissue studied. This gene, which is known as “Sox10”, is essential for cell division and the survival of stem cells.

The next step for the Zurich researchers was to test how Sox10 works in human melanoma cells. They determined that the gene also controls a stem-cell program in cancer cells and is necessary for cell division. In order to corroborate these findings in a living organism, the researchers ultimately used a mouse which carried similar genetic mutations to those found in human and thus developed black spontaneously. Astonishingly, the suppression of Sox10 in this animal model completely inhibited the formation and spread of cancer.

“Our research demonstrates that a tumor could probably be treated by attacking its stem cells,” concludes Sommer. The results also illustrate that such studies can primarily be successful through the close collaboration and conscious use of synergies between basic researchers and clinicians.

Explore further: New role for Vascular Endothelial Growth Factor in regulating skin cancer stem cells

Related Stories

Cell senescence does not stop tumor growth

January 19, 2012

Since cancer cells grow indefinitely, it is commonly believed that senescence could act as a barrier against tumor growth and potentially be used as a way to treat cancer. A collaboration between a cancer biologist from the ...

Arsenic turns stem cells cancerous, spurring tumor growth

April 4, 2012

Researchers at the National Institutes of Health have discovered how exposure to arsenic can turn normal stem cells into cancer stem cells and spur tumor growth. Inorganic arsenic, which affects the drinking water of millions ...

Recommended for you

Researchers thwart cancer cells by triggering 'virus alert'

August 27, 2015

Working with human cancer cell lines and mice, researchers at the Johns Hopkins Kimmel Cancer Center and elsewhere have found a way to trigger a type of immune system "virus alert" that may one day boost cancer patients' ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.