'Stoned' gene key to maintaining normal brain function

July 6, 2012
Dr Stephen Royle: “This research is another step towards fully understanding the complexities of the human brain.”

(Medical Xpress) -- Scientists at the University of Liverpool have found that a protein produced by a gene identified in fruitflies, is responsible for communication between nerve cells in the brain.

The ‘stoned’ gene was discovered in fruitflies by scientists in the 1970s. When this gene was mutated, the flies had problems walking and flying, giving rise to the term ‘stoned’ gene. The same gene was found in mammals some years later, but until now scientists have not known precisely what this gene is responsible for and why it causes problems with physical functions when it mutates.

‘Packets of chemicals’

Scientists at Liverpool have found that the protein the gene expresses in mammals, called stonin2, is responsible for retrieving ‘packets’ of chemicals that in the brain release in order to communicate with each other.  The inability of the gene to express this protein in the fruitfly study, suggests why the insect appeared not to be able to walk or fly normally.

The team used advanced techniques to inactivate stonin2 for short and long periods of time in animal cells grown in the laboratory. The cells used where from an area of the brain associated with learning and memory.  They showed that without stonin2 the nerve cells could not retrieve the ‘packets’ needed to transport the chemicals required for communications between nerve cells.

Dr Stephen Royle, from the University’s Institute of Translational Medicine, explains: “Nerve cells in the brain communicate by releasing ‘packets’ of chemicals.  These ‘packets’ must be retrieved and refilled with chemicals so that they can be used once again. This recycling programme is very important for nerve cells to keep communicating with each other. 

“We have shown that a protein called stonin 2 is needed for the packets to be retrieved. There is currently no evidence to suggest that the gene which expresses this is mutated in human disease, but any failure in its function would be disastrous.  The research is another step towards fully understanding the complexities of the human .”

The research is published in the journal, Current Biology.

Explore further: Gene 'switch' is another possible cause for depression

More information: www.cell.com/current-biology/abstract/S0960-9822(12)00635-5

Related Stories

Scientists expose important new weak spot in cancer cells

December 5, 2011

(Medical Xpress) -- Cancer Research UK scientists have discovered that cancer cells can ‘bag up and bin’ a toxic protein to cheat death – revealing a new Achilles heel in cancer cells that could be targeted ...

Prostate cancer early warning protein detected

May 31, 2012

(Medical Xpress) -- Scientists at the University have discovered a protein, only present in prostate cancer cells, that could be used as a marker to detect early signs of the disease.     

Brain cells created from patients' skin cells

February 7, 2012

(Medical Xpress) -- Cambridge scientists have, for the first time, created cerebral cortex cells – those that make up the brain’s grey matter – from a small sample of human skin.  The researchers’ ...

Recommended for you

Natural compound reduces signs of aging in healthy mice

October 27, 2016

Much of human health hinges on how well the body manufactures and uses energy. For reasons that remain unclear, cells' ability to produce energy declines with age, prompting scientists to suspect that the steady loss of efficiency ...

A metabolic switch to turn off obesity

October 27, 2016

You've tried all the diets. No matter: you've still regained the weight you lost, even though you ate well and you exercised regularly! This may be due to a particular enzyme in the brain: the alpha/beta hydrolase domain-6 ...

Scientists develop 'world-first' 3-D mammary gland model

October 27, 2016

A team of researchers from Cardiff University and Monash Biomedicine Discovery Institute has succeeded in creating a three-dimensional mammary gland model that will pave the way for a better understanding of the mechanisms ...

Mitochondria control stem cell fate

October 27, 2016

What happens in intestinal epithelial cells during a chronic illness? Basic research conducted at the Chair of Nutrition and Immunology at the Technical University of Munich (TUM) addressed this question by generating a new ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.