A surprise mechanism uncovered in the development of lupus

October 25, 2012
A surprise mechanism uncovered in the development of lupus
Credit: Shutterstock

In a study with a surprising outcome, scientists at Yale School of Medicine have discovered that an enzyme complex known for promoting natural resistance to bacteria and fungi unexpectedly inhibits the development of lupus. The finding could pave the way for development of therapeutic interventions in this debilitating disease. The study appears online in the Oct. 24 issue of Science Translational Medicine.

(SLE) is an autoimmune disease in which the immune system attacks the body's healthy tissue rather than foreign pathogens, resulting in inflammation and damage to joints and . The etiology of lupus is not well understood, but the suspected cause is debris produced when cells die.

The Yale researchers focused on a key enzyme complex in this process known as NADPH oxidase, or Nox2, and evaluated its role in lupus pathogenesis.

Before this study, it was commonly thought that Nox2 might actively promote the development of lupus by facilitating the release of DNA from called in a process called NET ("neutrophil extracellular trap") generation. To test that hypothesis, the Yale team evaluated disease in lupus-prone mice that lacked the Nox2 protein. Contrary to expectations, the Nox2-deficient mice whose neutrophils failed to generate NETs not only still got lupus, but got a much worse form of the disease. Surprised by the finding, researchers realized that normal function of Nox2 inhibits the development of lupus, rather than promoting it.

They are now focusing their research on how Nox2 controls lupus. "Nox2 clearly has an important role in fighting infection and lupus is often triggered by infection. We suspect that Nox2 could be an important connection between response to infection and lupus flares," said lead author Mark Shlomchik, M.D., professor of laboratory medicine and immunobiology at Yale School of Medicine. "We now plan to explore the mechanism by which NADPH oxidase is exerting its effects. Doing so should provide additional insights into the cause of this disease."

The implication for human cases of lupus could be enormous. "We suspect that without NADPH oxidase, neutrophils may die in a way that inflames the immune system," Shlomchik explains. "This may help us develop therapies that promote NADPH oxidase function and thereby suppress disease."

Related Stories

Study: Epstein Barr virus protects against autoimmune disease

April 2, 2012

To the surprise of investigating researchers, an animal model of Epstein Barr virus protected lupus-prone mice against development of the autoimmune disease. Earlier work had suggested that EBV might promote the development ...

Recommended for you

Experimental MERS vaccine shows promise in animal studies

July 28, 2015

A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines. ...

Can social isolation fuel epidemics?

July 21, 2015

Conventional wisdom has it that the more people stay within their own social groups and avoid others, the less likely it is small disease outbreaks turn into full-blown epidemics. But the conventional wisdom is wrong, according ...

Lack of knowledge on animal disease leaves humans at risk

July 20, 2015

Researchers from the University of Sydney have painted the most detailed picture to date of major infectious diseases shared between wildlife and livestock, and found a huge gap in knowledge about diseases which could spread ...

IBD genetically similar in Europeans and non-Europeans

July 20, 2015

The first genetic study of inflammatory bowel disease (IBD) to include individuals from diverse populations has shown that the regions of the genome underlying the disease are consistent around the world. This study, conducted ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.