New vitamin-based treatment that could reduce muscle degeneration in muscular dystrophy

October 23, 2012

Boosting the activity of a vitamin-sensitive cell adhesion pathway has the potential to counteract the muscle degeneration and reduced mobility caused by muscular dystrophies, according to a research team led by scientists at the University of Maine.

The discovery, published 23 October in the open access journal , is particularly important for congenital muscular dystrophies, which are progressive, debilitating and often lethal diseases that currently remain without cure. The researchers found that they could improve and function in a zebrafish version of muscular dystrophy by supplying a common cellular chemical (or its precursor, vitamin B3) to activate a cell adhesion pathway.

Muscle cells are in themselves relatively delicate, but derive important additional from adhesion protein complexes; these anchor the muscle cells to an external framework known as the basement membrane, thereby helping to buffer the cells against the extreme forces that they experience during muscle contractions. Mutations in the genes that encode these adhesion proteins can weaken these attachments, making more susceptible to damage and death.

The resulting muscle degeneration can eventually lead to progressive muscle-wasting diseases, such as muscular dystrophies. A major component of the basement membrane, a protein called laminin, binds to multiple different receptors on the muscle cell surface and forms a dense, organized network.

The study was led by UMaine Associate Professor of Biological Sciences, Clarissa Henry, whose laboratory focuses on understanding how cell adhesion complexes contribute to . The researchers discovered that a pathway involving a common cellular chemical called nicotinamide adenine dinucleotide (NAD+) plays a role in the formation of organized basement membranes in muscle tissue, during development of the fish embryo. As disordered basement membranes are seen in many different types of muscular dystrophies, the researchers wondered whether activating this pathway might reduce the severity of some muscular dystrophies.

In the current study, the researchers show that NAD+ improves the organization of laminin in a zebrafish version of muscular dystrophy. Zebrafish lacking either of the two main receptors for laminin have a disorganized basement membrane, causing and difficulties with movement. However adding extra NAD+, or even a vitamin packet containing vitamin B3 (niacin, a precursor to NAD+), significantly reduced these symptoms.

The research team found that the main protective effects of NAD+ come from enhancing the organization of the laminin structure in the , which helps to increase the resilience of diseased muscle fibers.

Because the same cell adhesion complexes are found in humans, the research team is optimistic that these findings may one day positively impact patients with muscular dystrophies. "Although there is a long way to go, I'm hopeful that our data could eventually lead to new adjuvant therapies," says University of Maine Ph.D. student Michelle Goody, who led the research team with Prof. Henry.

Prof. Henry summarizes; "One of my favorite aspects of this study is that it is a poster child for how asking basic biological questions can lead to exciting discoveries that may have future therapeutic potential."

Explore further: Potential therapy for congenital muscular dystrophy

More information: PLoS Biol 10(10): e1001409. doi:10.1371/journal.pbio.1001409

Related Stories

Potential therapy for congenital muscular dystrophy

December 30, 2008

Current research suggests laminin, a protein that helps cells stick together, may lead to enhanced muscle repair in muscular dystrophy. The related report by Rooney et al, "Laminin-111 restores regenerative capacity in a ...

Researchers review muscular dystrophy therapies

June 22, 2012

Leading muscular dystrophy researcher Dean Burkin, of the University of Nevada School of Medicine summarizes the impact of a new protein therapeutic, MG53, for the treatment of Duchenne muscular dystrophy in an article published ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.