Study shows how chronic inflammation can cause cancer

November 12, 2012

A hormone-like substance produced by the body to promote inflammation can cause an aggressive form of leukemia when present at high levels, according to a new study by researchers at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James).

The study shows that high levels of -15 (IL-15) alone can cause large granular lymphocytic (LGL) leukemia, a rare and usually fatal form of cancer, in an animal model. The researchers also developed a treatment for the leukemia that showed no discernible side effects in the .

Published in the journal Cancer Cell, the findings show that IL-15 is also overexpressed in patients with LGL leukemia and that it causes similar , suggesting that the treatment should also benefit people with the malignancy.

"We know that inflammation can cause cancer, but we don't know the exact mechanism," says principal investigator Dr. Michael A. Caligiuri, CEO of The James Cancer Hospital and Solove Research Institute, and director of Ohio State's Comprehensive Cancer Center.

"Here, we show one way it can happen, and we used that information to potentially cure the cancer."

Normally, the body releases IL-15 to stimulate the development, survival and proliferation of natural-killer cells, which are immune cells that destroy cancer and virus-infected cells. This research shows that when IL-15 is present in high amounts in the body for prolonged periods, such as during , it can cause certain called large granular lymphocytes, or LGLs, to become cancerous.

This malignant transformation begins when IL-15 attaches to receptors on the surface of normal LGLs, an event that boosts levels of a cancer-causing protein called Myc (pronounced "mick") inside the cells. The high Myc levels, in turn, bring changes that cause chromosome instability and additional gene mutations. The high Myc levels also activate a process called DNA methylation, which turns off a variety of genes, including important genes that normally suppress cancer growth.

"We stand the best chance of curing cancer when we understand its causes," says first author Anjali Mishra, a postdoctoral researcher in Caligiuri's laboratory. "Once we understood how this inflammatory hormone causes this leukemia, we used that information to develop a treatment by interfering with the process."

Caligiuri and Mishra were joined in this study by Dr. Guido Marcucci, associate director for Translational Research at the OSUCCC – James, Dr. Robert Lee, professor of pharmaceutics and pharmaceutical chemistry in Ohio State's College of Pharmacy and a group of collaborators. The investigators conducted the research using cells isolated from patients with LGL leukemia and a mouse model of the disease. Key findings include:

  • Exposing normal, human, large granular lymphocytes to IL-15 caused cell proliferation, chromosomal instability and global DNA hypermethylation;
  • Excessive IL-15 activated the cancer-causing Myc oncogene in large granular , leading to genetic instability, DNA hypermethylation and ;
  • Details of how Myc upregulation causes the genetic instability and hypermethylation.
Lee developed a liposomal formulation of the proteosome inhibitor bortezomib that shuts down the cancer-causing pathway, potentially curing the . Leukemic mice treated with the liposomal bortezomib showed 100 percent survival at 130 days versus 100 percent mortality at 60-80 days for control animals.

"We now plan to develop this drug for clinical use," says Marcucci, who holds the John B. and Jane T. McCoy Chair in Cancer Research in Cancer Research.

Explore further: Agent selectively targets malignant B cells in chronic leukemia, study shows

Related Stories

Recommended for you

Combination therapy can prevent cytostatic resistance

November 26, 2015

Researchers at Karolinska Institutet have found a new way of preventing resistance to cytostatics used in the treatment of cancers such as medulloblastoma, the most common form of malignant brain tumour in children. The promising ...

Forecasting the path of breast cancer in a patient

November 23, 2015

USC researchers have developed a mathematical model to forecast metastatic breast cancer survival rates using techniques usually reserved for weather prediction, financial forecasting and surfing the Web.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.