A light switch inside the brain

The polymer-based neural probe with platinum electrodes for the measurement of electrical signals, an injection channel for fluids (rectangular openings), and a waveguide for optical stimulation. Credit: IMTEK/University of Freiburg

Activating and deactivating individual nerve cells in the brain is something many neuroscientists wish they could do, as it would help them to better understand how the brain works.

Scientists in Freiburg and Basel, Switzerland, have developed an implant that is able to genetically modify specific , control them with , and measure their electrical activity all at the same time. This novel 3-in-1 tool paves the way for completely new experiments in neurobiology, also at Freiburg's new Cluster of Excellence BrainLinks-BrainTools.

Birthe Rubehn and her colleagues from the Department of Microsystems Engineering (IMTEK) and the Bernstein Center of the University of Freiburg as well as the Friedrich Miescher Institute for Biomedical Research in Basel describe the prototype of their implant in the journal . They report that initial experiments in which they implanted prototypes into mice were successful: The team was able to influence the activity of nerve cells in the brain in a controlled manner by means of laser .

The team used an innovative genetic technique that brings nerve cells to change their activity by shining light of different colors onto them. In optogenetics, genes from certain species of algae are inserted into the genome of another organism, for instance a mouse. The genes lead to the inclusion of light-sensitive pores for electrically charged particles into a nerve cell's membrane. These additional openings allow to control the cells' .

However, only the new implant from Freiburg and Basel makes this principle actually practicable. The device, at its tip only a quarter of a millimeter wide and a tenth of a millimeter thick, was constructed on the basis of polymers, special plastics whose safety for implantation into the nervous system has been proven. Contrary to probes developed so far, it is capable of injecting the substances necessary for , emitting light for the stimulation of the nerve cells, and measuring the effect through various electrical contacts all at once. Besides optimizing the technique for serial production, the scientists want to develop a second version whose injection channel dissolves over time, reducing the implant's size even further.

More information: Rubehn B., Wolff S.B.E., Tovote P., Lüthi A. and Stieglitz T. (2013): A polymer-based neural microimplant for optogenetic applications: design and first in vivo study. Lab on a Chip, DOI: 10.1039/C2LC40874K

add to favorites email to friend print save as pdf

Related Stories

Astrocytes: More than just glue

Aug 07, 2012

Epileptic fits are like thunderstorms raging in the brain: Nerve cells excite each other in an uncontrolled way so that strong, rhythmic electrical discharges sweep over whole brain regions. In the wake of ...

Stimulating brain cells with light

Oct 26, 2012

For the time being, this is basic research but the long term objective is to find new ways of treating Parkinson's disease. This increasingly common disease is caused by degeneration of the brain cells producing signal substance ...

Milestone in the regeneration of brain cells

Aug 20, 2007

The majority of cells in the human brain are not nerve cells but star-shaped glia cells, the so called “astroglia”. “Glia means “glue”, explains Götz. “As befits their name, until now these cells have been regarded ...

Controlling movements with light

Jul 20, 2011

German researchers at the Ruhr-Universitaet have succeeded in controlling the activity of certain nerve cells using light, thus influencing the movements of mice. By changing special receptors in nerve cells of the cerebellum ...

Recommended for you

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Tausch
not rated yet Jan 20, 2013
The researchers' opinion is called for - what following label describes the applications: invasive or non invasive?