Neurotransmitter serotonin shown to link sleep–wake cycles with the body's natural 24-hour cycle

Serotonin links rhythmic activity in the basal forebrain and pre-optic area (BF/POA) to the circadian rhythm signalled by the suprachiasmatic nucleus (SCN), allowing sleep-wake cycles to be regulated over 24 hours. Credit: 2012 Hiroyuki Miyamoto, RIKEN Brain Science Institute

Almost all animals have a hard-wired 'body-clock' that controls biological function in cycles of approximately 24 hours. This is known as the circadian rhythm and, in mammals, it is controlled by signaling in a region of the brain called the suprachiasmatic nucleus (SCN). The SCN regulates a number of functions, including hormonal secretion, metabolism, brain activity and sleep.

Areas of the brain close to the SCN—the basal forebrain and pre-optic area (BF/POA)—control –wake cycles. These short cycles, which are unevenly distributed across 24 hours, are regulated by the circadian rhythm. In order to maintain the overall circadian sleep pattern, these sleep–wake cycles must therefore be linked to the rhythm generated by the SCN. A team led by researchers at the RIKEN Brain Science Institute, Wako, has demonstrated that the is the key to this link.

The team measured neural firing in the SCN and BF/POA of rats to monitor and looked at how this changed when were reduced. The neurotransmitter was depleted in two separate ways: either an enzyme called TSOI was injected to degrade the precursor of serotonin and prevent its production, or an inhibitor of serotonin production called PCPA was added. Both methods had the same effect.

"After serotonin depletion, sleep–wake cycles became fragmented," said lead author Hiroyuki Miyamoto, "Sleep–wake phases were distributed throughout the day—that is, the circadian rhythm of sleep–wake cycles was lost." Underlying this was a disruption of rhythmic neural activity in the BF/POA, caused specifically by the reduction of serotonin levels. The same effect was not seen in the SCN, however, meaning that the circadian rhythm was unaffected while sleep–wake cycles were disturbed. Blocking serotonergic transmission locally in the BF/POA was also sufficient to disrupt sleep–. The researchers concluded that serotonin acts to link the two cycles. "Since the BF/POA is a brain region that directly controls sleep–wake states, we think that coupling of the SCN and BF/POA activity rhythms by serotonin is critical for circadian sleep–wake rhythm," says Miyamoto.

The findings may also help in understanding similar brain rhythms in humans and how they may contribute to disorders. "Similar mechanisms may also work in human brains," says Miyamoto. "Dysfunction of the serotonin system has been implicated in depression and patients frequently complain of insomnia. Thus, our study may provide insights into the relationships between serotonin, sleep, circadian rhythms and depression."

More information: Miyamoto, H., Nakamaru-Ogiso, E., Hamada, K. & Hensch, T.K. Serotonergic integration of circadian clock and ultradian sleep-wake cycles. Journal of Neuroscience 32, 14794–14803 (2012). www.jneurosci.org/content/32/42/14794.abstract

Related Stories

Energy levels link sleep control mechanisms

date May 25, 2012

Sleep, or lack of it, can determine level of cognitive performance which is linked with accidents as well as increased risk of serious health problems. Links between cell energy levels, gene transcription ...

Brain cell changes may cause sleep troubles in aging

date Apr 24, 2012

Older animals show cellular changes in the brain "clock" that sets sleep and wakeful periods, according to new research in the April 25 issue of The Journal of Neuroscience. The findings may help explain why elderly people ...

Rotating shift workers have lower levels of serotonin

date Aug 01, 2007

People who work rotating shifts have significantly lower levels of serotonin, a hormone and neurotransmitter in the central nervous system believed to play an important role in the regulation of sleep, according to a study ...

Recommended for you

Men and women could use different cells to process pain

date 18 hours ago

We have known for some time that there are sex differences when it comes to experiencing pain, with women showing a higher sensitivity to painful events compared to men. While we don't really understand w ...

Pupillary reflex enhanced by light inside blind spot

date 19 hours ago

University of Tokyo researchers have found that the light reflex of the pupil is modulated by light stimulation inside the blind spot in normal human observers, even though that light is not perceived.

How your brain knows it's summer

date Jun 29, 2015

Researchers led by Toru Takumi at the RIKEN Brain Science Institute in Japan have discovered a key mechanism underlying how animals keep track of the seasons. The study, published in Proceedings of the Na ...

His and her pain circuitry in the spinal cord

date Jun 29, 2015

New research released today in Nature Neuroscience reveals for the first time that pain is processed in male and female mice using different cells. These findings have far-reaching implications for our ba ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.