Pioneering study reveals association of chronic pain and broad epigenetic changes

Injuries that result in chronic pain, such as limb injuries, and those unrelated to the brain are associated with epigenetic changes in the brain which persist months after the injury, according to researchers at McGill University. Epigenetics explores how the environment – including diet, exposure to contaminants and social conditions such as poverty – can have a long-term impact on the activity of our genes.

The team led by Prof. Laura Stone, a professor at the Faculty of Dentistry and the Alan Edwards Centre for Research on Pain, and Prof. Moshe Szyf, a professor at the Faculty of Medicine's Department of Pharmacology and Therapeutics, have discovered a mechanism that embeds the memory of an injury in the way the DNA is marked in the by a chemical coating called or DNA methylation. The researchers report in the journal , that if the symptoms of are attenuated, the abnormal changes in DNA methylation could be reversed.

Research pioneered at McGill has previously shown that experiences and not solely chemicals alter the way genes are marked epigenetically, impacting our behavior and well-being. DNA methylation, an epigenetic mark on the gene itself, can therefore serve as a "memory" of an experience that will alter the way the gene functions long after the original experience is gone. The crucial difference between "genetic" and "epigenetic" causes for disease is that genetic changes are inherited and fixed, while epigenetic changes in contrast are possibly reversible.

The McGill research is the first to link chronic pain to genome-wide epigenetic changes in the brain. "Injury results in long-term changes to the DNA markings in the brain; our work shows it might be possible to reverse the effects of chronic pain by interventions using either behavioral or pharmacological means that interfere with DNA methylation, says Prof. Szyf. "Our findings have the potential to completely alter the way we treat chronic pain."

In this study, the researchers show that behavioral interventions that reverse chronic pain also remove differences in DNA methylation in the brain.

The team report alterations in global are observed in the prefrontal cortex (PFC) and amygdala of mice many months following injury to a nerve, and that environmental enrichment reduces both the pain and the pathological changes in PFC global methylation. They also found that the total amount of global methylation in the PFC significantly correlates with pain severity.

"These results suggest that epigenetic modulation mediates chronic pain-related alterations in the central nervous system (CNS), forming a "memory trace" for pain in the brain that can be targeted therapeutically, says Stone. Since respond to environmental changes, these mechanisms represent a mind-body link between chronic pain and the brain at the genomic level. "The implications of this work are wide reaching and may alter the way we think about chronic pain diagnosis, research and treatment".

Related Stories

Neuron memory key to taming chronic pain

Feb 13, 2012

For some, the pain is so great that they can't even bear to have clothes touch their skin. For others, it means that every step is a deliberate and agonizing choice. Whether the pain is caused by arthritic joints, an injury ...

Acute stress alters control of gene activity

Aug 15, 2012

Acute stress alters the methylation of the DNA and thus the activity of certain genes. This is reported by researchers at the Ruhr-Universität Bochum together with colleagues from Basel, Trier and London for the first ...

Recommended for you

Stress reaction may be in your dad's DNA, study finds

Nov 21, 2014

Stress in this generation could mean resilience in the next, a new study suggests. Male mice subjected to unpredictable stressors produced offspring that showed more flexible coping strategies when under ...

More genetic clues found in a severe food allergy

Nov 21, 2014

Scientists have identified four new genes associated with the severe food allergy eosinophilic esophagitis (EoE). Because the genes appear to have roles in other allergic diseases and in inflammation, the ...

Brain-dwelling worm in UK man's head sequenced

Nov 20, 2014

For the first time, the genome of a rarely seen tapeworm has been sequenced. The genetic information of this invasive parasite, which lived for four years in a UK resident's brain, offers new opportunities ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.