Mapping blank spots in the cheeseboard maze

March 22, 2013
Neuronal traces show action potentials for some recorded cells at the reward locations. LED traces taken by long exposure show the movement of the animal across the maze. Credit: IST Austria, 2013

(Medical Xpress)—During spatial learning, space is represented in the hippocampus through plastic changes in the connections between neurons. Jozsef Csicsvari and his collaborators investigate spatial learning in rats using the cheeseboard maze apparatus.

This apparatus contains many holes, some of which are selected to hide food in order to test . During learning trials, animals learn where the rewards are located, and after a period sleep, the researchers test whether the animal can recall these reward locations. In previous work, they and others have shown that memory of space is encoded in the through changes in the firing of excitatory , the so-called "". A place cell fires when the animal arrives at a particular location. Normally, place cells always fire at the same place in an environment; however, during spatial learning the place of their firing can change to encode where the reward is found, forming memory maps.

In their new publication, the researchers investigated the timescale of map formation, showing that during spatial learning, pyramidal neuron maps representing previous and new reward locations "flicker", with both firing patterns occurring. At first, old maps and new maps fluctuate, as the animal is unsure whether the location change is transient or long-lasting. At a later stage, the new map and so the relevant new information dominates.

The scientists also investigated the contribution of inhibitory interneuron circuits to learning. They show that these , which are extensively interconnected with pyramidal cells, change their firing rates during map formation and flickering: some interneurons fire more often when the new pyramidal map fires, while others fire less often with the new map. These changes in interneuron firing were only observed during learning, not during sleep or recall.

The scientists also show that the changes in firing rate are due to map-specific changes in the connections between pyramidal cells and interneurons. When a pyramidal cell is part of a new map, the strengthening of a connection with an interneuron causes an increase in the firing of this interneuron. Conversely, when a pyramidal cell is not part of a new map, the weakening of the connection with the interneuron causes a decrease in interneuron firing rate. Both, the increase and the decrease in firing rate can be beneficial for learning, allowing the regulation of plasticity between pyramidal cells and controlling the timing in their firing.

The new research therefore shows that not only excitatory neurons change modify their behaviour and exhibit plastic connection changes during learning, but also the inhibitory interneuron circuits. The researchers suggest that inhibitory interneurons could be involved in map selection – helping one dominate and take over during learning, so that the relevant information is encoded.

Related Stories

Conducting how neurons fire

November 25, 2011

Contrary to expectations that the neurotransmitter GABA only inhibited neuronal firing in the adult brain, RIKEN-led research has shown that it can also excite interneurons in the hippocampus of the rat brain by changing ...

Control of brain waves from the brain surface

June 15, 2012

Whether or not a neuron transmits an electrical impulse is a function of many factors. European research is using a heady mixture of techniques – molecular, microscopy and electrophysiological – to identify the ...

Recommended for you

It don't mean a thing if the brain ain't got that swing

July 27, 2015

Like Duke Ellington's 1931 jazz standard, the human brain improvises while its rhythm section keeps up a steady beat. But when it comes to taking on intellectually challenging tasks, groups of neurons tune in to one another ...

Sleep makes our memories more accessible, study shows

July 27, 2015

Sleeping not only protects memories from being forgotten, it also makes them easier to access, according to new research from the University of Exeter and the Basque Centre for Cognition, Brain and Language. The findings ...

Static synapses on a moving structure: Mind the gap!

July 22, 2015

In biology, stability is important. From body temperature to blood pressure and sugar levels, our body ensures that these remain within reasonable limits and do not reach potentially damaging extremes. Neurons in the brain ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.