Reversing paralysis with restorative gel: Researchers develop implant to regenerate nerves

Reversing paralysis with restorative gel: Researchers develop implant to regenerate nerves

(Medical Xpress)—Some parts of the body, like the liver, can regenerate themselves after damage. But others, such as our nervous system, are considered either irreparable or slow to recover, leaving thousands with a lifetime of pain, limited mobility, or even paralysis.

Now a team of Tel Aviv University researchers, including Dr. Shimon Rochkind of TAU's Sackler Faculty of Medicine and Tel Aviv Sourasky Medical Center and Prof. Zvi Nevo of TAU's Department of and Biochemistry, has invented a method for repairing damaged . Through a biodegradable implant in combination with a newly-developed Guiding Regeneration Gel (GRG) that increases and healing, the functionality of a torn or damaged nerve could ultimately be restored.

This innovative project is now gaining international recognition. Its initial successes were reported recently at several renowned scientific congresses, including the World Federation of Neurological Societies and the European Neurological Society. And the therapy, already tested in animal models, is only a few years away from clinical use, says Dr. Rochkind.

Like healing in the womb

A nerve is like an . When severed or otherwise damaged, power can no longer be transferred and the cable loses its functionality. Similarly, a damaged nerve loses the ability to transfer signals for movement and feeling through the nervous system.

But Dr. Rochkind and Prof. Nevo found a way to breach the gap. In their method, two severed ends of a damaged nerve are reconnected by implanting a soft, biodegradable tube, which serves as a bridge to help the nerve ends connect. The innovative gel which lines the inside of the tube nurtures nerve fibers' growth, encouraging the nerve to reconnect the severed ends through the tube, even in cases with massive , Dr. Rochkind says.

The key lies in the composition of the gel, the researchers say, which has three main components: anti-oxidants, which exhibit high anti-inflammatory activities; synthetic laminin peptides, which act as a railway or track for the to grow along; and hyaluronic acid, commonly found in the human fetus, which serves as a buffer against drying, a major danger for most implants. These components allow the to heal the way a fetus does in the womb—quickly and smoothly.

Keeping cells safe for transplant

The implant has already been tested in animal models, and the gel by itself can be used as a stand-alone product, acting as an aid to cell therapy. GRG is not only able to preserve cells, it can support their survival while being used for therapy and transplantation, says Dr. Rochkind. When grown in the gel, cells show excellent development, as well as intensive fiber growth. This could have implications for the treatment of diseases such as Parkinson's, for which researchers are actively exploring cell therapy as a potential solution.

Related Stories

Biomaterial aids nerve regeneration

Jun 07, 2011

(Medical Xpress) -- A Monash University researcher has developed a new biomaterial that encourages damaged nerves in the brain and spinal cord to regrow. The work could revolutionise treatment of nerve-based ...

New target for Alzheimer's disease treatment

Mar 18, 2013

Researchers have found new evidence that insulating cells, the cells that protect our nerves, can be made and added to the central nervous system throughout our lifetime.

Recommended for you

Emotional adjustment following traumatic brain injury

Oct 24, 2014

Life after a traumatic brain injury resulting from a car accident, a bad fall or a neurodegenerative disease changes a person forever. But the injury doesn't solely affect the survivor – the lives of their spouse or partner ...

New ALS associated gene identified using innovative strategy

Oct 22, 2014

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Jeddy_Mctedder
1 / 5 (1) May 13, 2013
Its a shame someone as clever as steven hawking lacks the wisdom to refrain from boycotting a country that produces technology that could possibly restore his health.