Experimental vaccine shows promise against TB meningitis

June 11, 2013

A team of Johns Hopkins researchers working with animals has developed a vaccine that prevents the virulent TB bacterium from invading the brain and causing the highly lethal condition TB meningitis, a disease that disproportionately occurs in TB-infected children and in adults with compromised immune system.

A report on the federally funded research is published online June 11 in the journal PLOS ONE.

TB infections often cause serious and death even when recognized and treated promptly, researchers say. This is so because many drugs currently used to treat resistant cannot cross the so-called brain-blood barrier, which stops pathogens from entering the brain, but also keeps most medicines woefully out of the brain's reach.

"Once TB infects the brain, our treatment options have modest effect at best, so preventing in the first place is the only fool-proof way to avert neurologic damage and death," said lead investigator Sanjay Jain, M.D., an infectious disease specialist at the Johns Hopkins Children's Center. "Unfortunately, our sole preventive weapon, the traditional BCG , has a spotty track record in terms of efficacy."

The new Johns Hopkins vaccine, tested in , could eventually add a much-needed weapon to a largely depleted therapeutic and preventive arsenal. TB currently affects nearly 9 million people worldwide and is growing increasingly resistant to many powerful antibiotics, according to the (WHO).

The works against certain lethal strains of TB that are marked by the presence of a protein known as PknD, which helps the sneak past the . Specifically, PknD makes TB virulent by allowing it to attach to, damage and penetrate the protective cells that line the small blood vessels of the brain and prevent toxins and bugs traversing the blood from invading the organ.

If proven effective in people, the vaccine also could be used to boost the brain-protective effects of the traditional BCG vaccine, the only currently available anti-TB vaccine, the efficacy of which varies greatly, Jain says. In addition, BCG contains live bacteria and therefore cannot be given to immune-compromised people, such as HIV patients, who are at greater risk of developing widespread TB. About one-third of the 34 million HIV-infected people worldwide have TB, according to the WHO.

By contrast, the experimental vaccine is made with PknD protein chunks, which by themselves cannot cause full-blown disease even in people with weakened immune systems.

In their experiments, the Johns Hopkins researchers compared the effectiveness of the new vaccine with the traditional . Animals were injected with placebo, BCG or the new vaccine and then exposed to airborne TB. The researchers measured TB loads in the lungs and brains of all three groups, as well as in those of non-vaccinated animals.

Animals given either active vaccine had far fewer TB cells in their brains compared with their non-vaccinated or placebo-vaccinated counterparts. Both vaccines were equally effective in preventing invasive TB infections of the brain and spinal cord, even though the new vaccine fared worse at reducing TB cell loads in the lungs. Notably, animals injected with the new vaccine had TB cell counts in their lungs similar to those of placebo-injected or non-vaccinated animals, yet far fewer TB cells in their brains.

"What this tells us is that even in the presence of full-blown lung infection, the new vaccine somehow blunted TB's ability to infect and damage the brain," said investigator Ciaran Skerry, Ph.D., of the Johns Hopkins Center for Tuberculosis Research.

Animals that got the new vaccine also had higher levels of protective TB-specific antibodies and higher levels of interferons, the cry-for-help chemicals released by virus-infected or bacterium-infected cells that summon the body's immune defenses against pathogens.

To determine whether the new vaccine could also render the TB bacterium less virulent in human cells, the researchers soaked TB bacteria in blood obtained from BCG-vaccinated, non-vaccinated and experimentally vaccinated animals, then mixed the pre-soaked TB bacteria with human endothelial cells that line the small blood vessels of the brain and guard it against invasive pathogens. Bacteria treated with blood from the experimentally vaccinated animals showed far less virulence and were far less capable of damaging the human cells than were the TB bacteria soaked in blood from BCG-vaccinated or non-vaccinated animals.

Explore further: New tuberculosis vaccine doesn't protect infants, study finds

More information: dx.plos.org/10.1371/journal.pone.0066310

Related Stories

New tuberculosis research movement needed

November 30, 2011

In this week's PLoS Medicine, Christian Lienhardt from the WHO in Geneva, Switzerland and colleagues announce that the Stop TB Partnership and the WHO Stop TB Department have launched the TB Research Movement.

Study finds vitamin C can kill drug-resistant TB (w/ video)

May 21, 2013

In a striking, unexpected discovery, researchers at Albert Einstein College of Medicine of Yeshiva University have determined that vitamin C kills drug-resistant tuberculosis (TB) bacteria in laboratory culture. The finding ...

Recommended for you

Zika virus infection alters human and viral RNA

October 20, 2016

Researchers at University of California San Diego School of Medicine have discovered that Zika virus infection leads to modifications of both viral and human genetic material. These modifications—chemical tags known as ...

Food-poisoning bacteria may be behind Crohn's disease

October 19, 2016

People who retain a particular bacterium in their gut after a bout of food poisoning may be at an increased risk of developing Crohn's disease later in life, according to a new study led by researchers at McMaster University.

Neurodevelopmental model of Zika may provide rapid answers

October 19, 2016

A newly published study from researchers working in collaboration with the Regenerative Bioscience Center at the University of Georgia demonstrates fetal death and brain damage in early chick embryos similar to microcephaly—a ...

Scientists uncover new facets of Zika-related birth defects

October 17, 2016

In a study that could one day help eliminate the tragic birth defects caused by Zika virus, scientists from the Florida campus of The Scripps Research Institute (TSRI) have elucidated how the virus attacks the brains of newborns, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.