Immunology: White blood cells show their stripes

Immunology: White blood cells show their stripes
Discovery of the CD11b+ subset (green) of murine dendritic cells and its direct human counterpart (not shown) could lead to improved therapeutics. Credit: A*STAR Singapore Immunology Network

For the human immune system to work effectively, the body must be able to distinguish invading pathogens, such as fungi and bacteria, from its own healthy tissue. A group of white blood cells known as dendritic cells (DCs) has a critical role in this task: DCs recognize pathogens then activate and regulate the immune system accordingly. Immunologists therefore believe that DCs could be harnessed for new therapies against fungal and bacterial infections, as well as autoimmune diseases such as multiple sclerosis.

Florent Ginhoux and co-workers at the A*STAR Singapore Immunology Network, together with researchers in the UK, United States and Japan, have identified a subset of DCs that exists in mouse and human mucosal tissues. The murine subset is called CD11b+ and the human equivalent is called CD1c+. The existence of similar in the two species will assist in translating the results of murine experiments to human biology and also further the development of clinical therapies.

Contamination by other cell types in previous studies limited the true understanding of the function of CD11b+ cells, Ginhoux notes. "In this study, we found new markers to specifically identify CD11b+ DCs."

Parts of the body that are exposed to the external environment, such as the lungs and gut, contain DCs (see image). They act as messengers, presenting fragments of pathogens to other called CD4 T- that trigger appropriate immune responses. One particular T-helper, Th17, in concert with DCs, specializes in activating the protective response to fungal or bacterial infections.

"We found that CD11b+ DCs secrete a specific cytokine protein named interleukin-23 (IL-23). This protein induces and governs Th17 cells that secrete a second cytokine—IL-17—a very potent against fungi in the lungs of mice as well as of humans," explains Ginhoux.

During infections that fight and clear pathogens, IL-17 can be very powerful. If cytokine IL-23 secretion is unregulated, however, it induces exacerbated Th17 responses because of an excess of IL-17 release. This regulation failure has been linked to the development of psoriasis, Crohn's disease and multiple sclerosis. Controlling the activity of DCs that regulate IL-23 and subsequent Th17 cell responses could therefore prove useful therapeutically.

"There are two major applications for this research," says Ginhoux. Firstly, a vaccine strategy targeting CD11b+ DCs to trigger a potent IL-17-dependent immune response could prevent fungal and bacterial infections. Secondly, selectively inhibiting CD11b+ DCs may lead to better control of IL-17-dependent autoinflammatory disorders.

More information: Schlitzer, A., McGovern, N., Teo, P., Zelante, T., Atarashi, K. et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses, Immunity 38, 970–983 (2013). www.cell.com/immunity/abstract… 1074-7613(13)00205-7

add to favorites email to friend print save as pdf

Related Stories

Jump-starting cheaper cancer vaccines

Sep 26, 2012

Dendritic cells (DCs)—workhorses of the immune system—derived from human embryonic stem cells (hESCs) may provide an economical way of generating off-the-shelf therapeutic vaccines against cancers, according ...

Recommended for you

Profilin can induce severe food-allergic reactions

18 hours ago

(HealthDay)—Profilins are complete food allergens in food-allergic patient populations that are exposed to high levels of grass pollen, according to a study published in the December issue of Allergy.

Structured education program beneficial for anaphylaxis

Nov 21, 2014

(HealthDay)—A structured education intervention improves knowledge and emergency management for patients at risk for anaphylaxis and their caregivers, according to a study published online Nov. 19 in Allergy.

Every step you take: STING pathway key to tumor immunity

Nov 20, 2014

A recently discovered protein complex known as STING plays a crucial role in detecting the presence of tumor cells and promoting an aggressive anti-tumor response by the body's innate immune system, according to two separate ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.