Immunology: White blood cells show their stripes

August 28, 2013
Immunology: White blood cells show their stripes
Discovery of the CD11b+ subset (green) of murine dendritic cells and its direct human counterpart (not shown) could lead to improved therapeutics. Credit: A*STAR Singapore Immunology Network

For the human immune system to work effectively, the body must be able to distinguish invading pathogens, such as fungi and bacteria, from its own healthy tissue. A group of white blood cells known as dendritic cells (DCs) has a critical role in this task: DCs recognize pathogens then activate and regulate the immune system accordingly. Immunologists therefore believe that DCs could be harnessed for new therapies against fungal and bacterial infections, as well as autoimmune diseases such as multiple sclerosis.

Florent Ginhoux and co-workers at the A*STAR Singapore Immunology Network, together with researchers in the UK, United States and Japan, have identified a subset of DCs that exists in mouse and human mucosal tissues. The murine subset is called CD11b+ and the human equivalent is called CD1c+. The existence of similar in the two species will assist in translating the results of murine experiments to human biology and also further the development of clinical therapies.

Contamination by other cell types in previous studies limited the true understanding of the function of CD11b+ cells, Ginhoux notes. "In this study, we found new markers to specifically identify CD11b+ DCs."

Parts of the body that are exposed to the external environment, such as the lungs and gut, contain DCs (see image). They act as messengers, presenting fragments of pathogens to other called CD4 T- that trigger appropriate immune responses. One particular T-helper, Th17, in concert with DCs, specializes in activating the protective response to fungal or bacterial infections.

"We found that CD11b+ DCs secrete a specific cytokine protein named interleukin-23 (IL-23). This protein induces and governs Th17 cells that secrete a second cytokine—IL-17—a very potent against fungi in the lungs of mice as well as of humans," explains Ginhoux.

During infections that fight and clear pathogens, IL-17 can be very powerful. If cytokine IL-23 secretion is unregulated, however, it induces exacerbated Th17 responses because of an excess of IL-17 release. This regulation failure has been linked to the development of psoriasis, Crohn's disease and multiple sclerosis. Controlling the activity of DCs that regulate IL-23 and subsequent Th17 cell responses could therefore prove useful therapeutically.

"There are two major applications for this research," says Ginhoux. Firstly, a vaccine strategy targeting CD11b+ DCs to trigger a potent IL-17-dependent immune response could prevent fungal and bacterial infections. Secondly, selectively inhibiting CD11b+ DCs may lead to better control of IL-17-dependent autoinflammatory disorders.

Explore further: A novel mechanism that regulates pro-inflammatory cells identified

More information: Schlitzer, A., McGovern, N., Teo, P., Zelante, T., Atarashi, K. et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses, Immunity 38, 970–983 (2013).

Related Stories

Jump-starting cheaper cancer vaccines

September 26, 2012

Dendritic cells (DCs)—workhorses of the immune system—derived from human embryonic stem cells (hESCs) may provide an economical way of generating off-the-shelf therapeutic vaccines against cancers, according to research ...

Recommended for you

Snapshot turns T cell immunology on its head

October 6, 2015

Challenging a universally accepted, longstanding consensus in the field of immunity requires hard evidence. New research from the Australian Research Council Centre of excellence in advanced Molecular imaging has shown the ...

Four gut bacteria decrease asthma risk in infants

September 30, 2015

New research by scientists at UBC and BC Children's Hospital finds that infants can be protected from getting asthma if they acquire four types of gut bacteria by three months of age. More than 300 families from across Canada ...

Flu infection reveals many paths to immune response

September 28, 2015

A new study of influenza infection in an animal model broadens understanding of how the immune system responds to flu virus, showing that the process is more dynamic than usually described, engaging a broader array of biological ...

Immune cells may help fight against obesity

September 15, 2015

While a healthy lifestyle and "good genes" are known to help prevent obesity, new research published on September 15 in Immunity indicates that certain aspects of the immune system may also play an important role. In the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.