Tuberculosis and Parkinson's disease linked by unique protein

A protein at the center of Parkinson's disease research now also has been found to play a key role in causing the destruction of bacteria that cause tuberculosis, according to scientists led by UC San Francisco microbiologist and tuberculosis expert Jeffery Cox, PhD.

The protein, named Parkin, already is the focus of intense investigation in Parkinson's disease, in which its malfunction is associated with a loss of . Cox and colleagues now report that Parkin also acts on , triggering destruction of the by known as macrophages. Results appear online today (September 4, 2013) in the journal Nature.

The finding suggests that disease-fighting strategies already under investigation in pre-clinical studies for Parkinson's disease might also prove useful in fighting tuberculosis, according to Cox. Cox is investigating ways to ramp up Parkin activity in mice infected with tuberculosis using a strategy similar to one being explored by his UCSF colleague Kevan Shokat, PhD, as a way to ward off in Parkinson's disease.

Globally, tuberculosis kills 1.4 million people each year, spreading from person to person through the air. Parkinson's disease, the most common neurodegenerative movement disorder, also affects millions of mostly elderly people worldwide.

Cox homed in on the enzyme Parkin as a common element in Parkinson's and tuberculosis through his investigations of how macrophages engulf and destroy bacteria. In a sense the macrophage—which translates from Greek as "big eater"—gobbles down foreign bacteria, through a process scientists call xenophagy.

Mycobacterium tuberculosis, along with a few other types of bacteria, including Salmonella and -causing Mycobacterium leprae, are different from other kinds of bacteria in that, like viruses, they need to get inside cells to mount a successful infection.

The battle between macrophage and mycobacterium can be especially intense. M. tuberculosis invades the macrophage, but then becomes engulfed in a sac within the macrophage that is pinched off from the cell's outer membrane. The bacteria often escape this intracellular jail by secreting a protein that degrades the sac, only to be targeted yet again by molecular chains made from a protein called ubiquitin. Previously, Cox discovered molecules that escort these chained mycobacteria to more secure confinement within compartments inside cells called lysosomes, where the bacteria are destroyed.

The cells of non-bacterial organisms ranging in complexity from baker's yeast to humans also use a similar mechanism—called autophagy—to dispose of their own unneeded molecules or worn out cellular components. Among the most abundant and crucial of these components are the cell's mitochondria, metabolic powerhouses that convert food molecules into a source of energy that the cell can readily use to carry out its everyday housekeeping chores, as well as its more specialized functions.

Like other cellular components, mitochondria can wear out and malfunction, and often require replacement. The process through which mitochondria are disposed of, called mitophagy, depends on Parkin.

Cox became curious about the enzyme when he learned that specific, naturally occurring variations in the Parkin gene, called polymorphisms, are associated with increased susceptibility to tuberculosis infection.

"Because of the commonalities between mitophagy and the xenophagy of intracellular mycobacteria, as well as the links between Parkin gene polymorphisms and increased susceptibility to bacterial infection in humans, we speculated that Parkin may also be recruited to M. tuberculosis and target it for xenophagy," Cox said.

In both mouse and human infected with M. tuberculosis in the lab, Parkin played a key role in fighting the bacteria, Cox and colleagues found. In addition, genetically engineered mice lacking Parkin died when infected with M. tuberculosis, while mice with normal Parkin survived infection.

The involvement of Parkin in targeting both damaged mitochondria and infectious mycobacteria arose long ago in evolution, Cox argues. As part of the Nature study, the research team found that Parkin-deficient mice and flies – creatures quite distant from humans in evolutionary time – also are more sensitive than normal mice and flies to intracellular bacterial infections.

Looking back more than 1 billion years, Cox noted that mitochondria evolved from bacteria that were taken up by cells in a symbiotic relationship.

In the same way that the immune system recognizes infectious bacteria as foreign, Cox said, "The evolutionary origin of mitochondria from bacteria suggests that perhaps mitochondrial dysfunction triggers the recognition of a mitochondrian as non-self."

Having now demonstrated the importance of Parkin in fighting mycobacterial infection, Cox has begun working with Shokat to find a way to boost Parkin activity against cell-invading bacteria. "We are exploring the possibility that small-molecule drugs could be developed to activate Parkin to better fight tuberculosis infection," Cox said.

Related Stories

How disease mutations affect the Parkin protein

May 31, 2013

Researchers at the MRC Laboratory of Molecular Biology in the United Kingdom have determined the crystal structure of Parkin, a protein found in cells that when mutated can lead to a hereditary form of Parkinson's disease. ...

Unleashing the watchdog protein

May 09, 2013

McGill University researchers have unlocked a new door to developing drugs to slow the progression of Parkinson's disease. Collaborating teams led by Dr. Edward A. Fon at the Montreal Neurological Institute and Hospital -The ...

A new wrinkle in Parkinson's disease research

Aug 16, 2013

The active ingredient in an over-the-counter skin cream might do more than prevent wrinkles. Scientists have discovered that the drug, called kinetin, also slows or stops the effects of Parkinson's disease on brain cells.

Recommended for you

At one month, US Ebola monitors finding no cases

2 hours ago

The U.S. program that requires weeks of monitoring for travelers from African countries with Ebola reaches the one-month mark Thursday. And so far, no cases of the disease have turned up.

EU calls for 5,000 doctors to fight Ebola

2 hours ago

The European Commission called for 5,000 doctors to be sent from EU states to combat west Africa's Ebola epidemic, a European source with knowledge of the matter said on Wednesday.

Guinea, hit by Ebola, reports only one cholera case

2 hours ago

The health workers rode on canoes and rickety boats to deliver cholera vaccines to remote islands in Guinea. Months later, the country has recorded only one confirmed cholera case this year, down from thousands.

Sierra Leone official: Ebola worst could be over

2 hours ago

The Ebola outbreak in Sierra Leone, which has been surging in recent days, may have reached its peak and be on the verge of slowing down, Sierra Leone's information minister said Wednesday.

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

kimberly_burnham_7
not rated yet Sep 18, 2013
Do You Ever Describe Yourself As Stiff as a Board? by Kimberly Burnham, PhD, Guest Contributor and Author of the upcoming book, "Bicycling for Food" in Ride Fit (March 11th, 2013)
Alive a tree is full of growth and vitality. Dead it is stiff as a board. The same is true of your cells. What brings life, growth and vitality into your cells? In Traditional Chinese Medicine the wood elements are the liver and the gallbladder. A healthy liver and gallbladder contribute to adaptability, flexibility and speedy cellular repair. The wood elements are also associated with the brain chemical dopamine, which when imbalanced contributes to conditions like Parkinson's disease (stiffness and loss of muscle control) and schizophrenia (loss of connection to reality, the ability to imagine and to be able to tell the difference) ... [More] http://www.ride-f...RVc_D-M8

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.