Brain aging is conclusively linked to genes

November 4, 2013

For the first time in a large study sample, the decline in brain function in normal aging is conclusively shown to be influenced by genes, say researchers from the Texas Biomedical Research Institute in San Antonio and Yale University.

"Identification of genes associated with aging should improve our understanding of the biological processes that govern normal age-related decline," said John Blangero, Ph.D., a Texas Biomed geneticist and the senior author of the paper. The study, funded by the National Institutes of Health (NIH), is published in the November 4, 2013 issue of the Proceedings of the National Academy of Sciences. David Glahn, Ph.D., an associate professor of psychiatry at the Yale University School of Medicine, is the first author on the paper.

In large pedigrees including 1,129 people aged 18 to 83, the scientists documented profound aging effects from young adulthood to old age, on neurocognitive ability and brain white matter measures. White matter actively affects how the brain learns and functions. Genetic material shared amongst biological relatives appears to predict the observed changes in with age.

Participants were enrolled in the Genetics of Brain Structure and Function Study and drawn from large Mexican Americans families in San Antonio. Brain imaging studies were conducted at the University of Texas Health Science Center at San Antonio Research Imaging Institute directed by Peter Fox, M.D.

"The use of large human pedigrees provides a powerful resource for measuring how change with age," Blangero said. By applying a sophisticated analysis, the scientists demonstrated a heritable basis for neurocognitive deterioration with age that could be attributed to genetic factors. Similarly, decreasing integrity with was influenced by genes., The investigators further demonstrated that different sets of genes are responsible for these two biological aging processes.

"A key advantage of this study is that we specifically focused on large extended families and so we were able to disentangle genetic from non-genetic influences on the aging process," said Glahn.

Explore further: New approach to study depression may lead to new marker for risk

More information: Genetic basis of neurocognitive decline and reduced white-matter integrity in normal human brain aging, www.pnas.org/cgi/doi/10.1073/pnas.1313735110

Related Stories

Atlas shows how genes organize the surface of the brain

March 29, 2012

The first atlas of the surface of the human brain based upon genetic information has been produced by a national team of scientists, led by researchers at the University of California, San Diego School of Medicine and the ...

High-flying pilots at increased risk of brain lesions

August 19, 2013

A new study suggests that pilots who fly at high altitudes may be at an increased risk for brain lesions. The study is published in the August 20, 2013, print issue of Neurology, the medical journal of the American Academy ...

Memory-related brain network shrinks with aging

September 20, 2013

Brain regions associated with memory shrink as adults age, and this size decrease is more pronounced in those who go on to develop neurodegenerative disease, reports a new study published Sept. 18 in the Journal of Neuroscience ...

Recommended for you

New type of prion may cause, transmit neurodegeneration

August 31, 2015

Multiple System Atrophy (MSA), a neurodegenerative disorder with similarities to Parkinson's disease, is caused by a newly discovered type of prion, akin to the misfolded proteins involved in incurable progressive brain diseases ...

Deciphering the olfactory receptor code

August 31, 2015

In animals, numerous behaviors are governed by the olfactory perception of their surrounding world. Whether originating in the nose of a mammal or the antennas of an insect, perception results from the combined activation ...

How neurons get their branching shapes

August 31, 2015

For more than a hundred years, people have known that dendritic arbors—the projections that neurons use to receive information from other neurons—differ in size and shape depending on neuron type. Now, researchers at ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.