Drug shows early promise in treating seizures

A study out today in the journal Nature Medicine suggests a potential new treatment for the seizures that often plague children with genetic metabolic disorders and individuals undergoing liver failure. The discovery hinges on a new understanding of the complex molecular chain reaction that occurs when the brain is exposed to too much ammonia.

The study shows that elevated levels of ammonia in the blood overwhelm the 's defenses, ultimately causing nerve cells to become overexcited. The researchers have also discovered that bumetanide – a diuretic drug used to treat high blood pressure – can restore normal electrical activity in the brains of mice with the condition and prevent .

"Ammonia is a ubiquitous waste product of regular protein metabolism, but it can accumulate in toxic levels in individuals with ," said Maiken Nedergaard, M.D., D.M.Sc., co-director of the University of Rochester Medical Center (URMC) Center for Translational Neuromedicine and lead author of the article. "It appears that the key to preventing the debilitating neurological effects of ammonia toxicity is to correct a molecular malfunction which causes nerve cells in the brain to become chemically unbalanced."

In healthy people, ammonia is processed in the liver, converted to urea, and expelled from the body in urine. Because it is a gas, ammonia can slip through the blood-brain-barrier and make its way into brain tissue. Under normal circumstances, the brain's housekeeping cells – called astrocytes – sweep up this unwanted ammonia and convert it into a compound called glutamine which can be more easily expelled from the brain.

However, individuals with certain genetic metabolic disorders and people with impaired liver function because of chronic hepatitis, alcoholism, acetaminophen overdose, and other toxic liver conditions cannot remove ammonia from their bodies quickly enough. The result is a larger than normal concentration of ammonia in the blood, a condition called hyperammonemia.

When too much ammonia makes its way into the central nervous system, it can lead to tremors, seizures and, in extreme cases, can cause comas and even lead to death. In children with metabolic disorders the frequent seizures can lead to long-term neurological impairment.

While ammonia has long been assumed to be the culprit behind the neurological problems associated with inherited metabolic disorders and , the precise mechanisms by which it triggers seizures and comas have not been fully understood. The new study reveals that ammonia causes a chain of events that alters the chemistry and electrical activity of the brain's , causing them to fire in uncontrolled bursts.

One of the keys to unraveling the effects of ammonia on the brain has been new imagining technologies such as two-photon microscopy which allow researchers to watch this phenomenon in real time in the living brains of mice. As suspected, they observed that when high levels of ammonia enter the brain, astrocytes become quickly overwhelmed and cannot remove it fast enough.

The abundant ammonia in the brain mimics the function of potassium, an important player in neurotransmission, and tricks neurons into becoming depolarized. This makes it more likely that in the brain will exceed the threshold necessary to trigger seizures.

Furthermore, the researchers observed that one of the neuron's key molecular gatekeepers – a transporter known as NKCC1 – was also fooled into thinking that the ammonia was potassium. As a result, it went into overdrive, loading neurons with too much chloride. This in turn prevents the cells from stabilizing itself after spikes in activity, keeping the cells in a heightened level of electrical "excitability."

The team found that the drug bumetanide, a known NKCC1 inhibitor, blocked this process and prevented the cells from overloading with chloride. By knocking down this "secondary" cellular effect of , the researchers were able to control the seizures in the mice and prolong their survival.

"The neurologic impact of hyperammonemia is a tremendous clinical problem without an effective medical solution," said Nedergaard. "The fact that bumetanide is already approved for use gives us a tremendous head start in terms of developing a potential treatment for this condition. This study provides a framework to further explore the therapeutic potential of this and other NKCC1 inhibitors."

More information: Nature Medicine DOI: 10.1038/nm.3400

Related Stories

Ravicti approved for urea cycle disorders

Feb 01, 2013

(HealthDay)—Ravicti (glycerol phenylbutyrate) has been approved by the U.S. Food and Drug Administration to treat certain urea cycle disorders (UCDs) in people 2 years and older.

Something fishy in human blood could save lives

Mar 30, 2007

Thousands of people with liver and kidney disease die every year from too much ammonia in their blood, and scientists from the United States and Japan have found a possible solution. In the April 2007 issue of The FASEB Journal ...

Recommended for you

Surprising new role for calcium in sensing pain

26 minutes ago

When you accidentally touch a hot oven, you rapidly pull your hand away. Although scientists know the basic neural circuits involved in sensing and responding to such painful stimuli, they are still sorting ...

Neurons in human skin perform advanced calculations

20 hours ago

Neurons in human skin perform advanced calculations, previously believed that only the brain could perform. This is according to a study from Umeå University in Sweden published in the journal Nature Ne ...

Memory in silent neurons

Aug 31, 2014

When we learn, we associate a sensory experience either with other stimuli or with a certain type of behavior. The neurons in the cerebral cortex that transmit the information modify the synaptic connections ...

User comments