Gene therapy method targets tumor blood vessels

December 23, 2013
Gene therapy method targets tumor blood vessels
Embargoed until 5 p.m. ET Monday, Dec. 23, 2013. Working in mice, researchers at Washington University School of Medicine in St. Louis report developing a gene delivery method long sought in the field of gene therapy: a deactivated virus carrying a gene of interest that can be injected into the bloodstream and make its way to the right cells. The scientists designed a viral vector that homes in on the abnormal blood vessels of tumors, opening up new therapeutic possibilities for gene therapy against cancer and other conditions that involve abnormal vasculature. In one case, the primary kidney tumor spread to an ovary. The vectors gathering in the metastatic tumor vessels glow green, above. The red staining shows the normal blood vessels of the ovary. Credit: Curiel, Arbeit

Working in mice, researchers at Washington University School of Medicine in St. Louis report developing a gene delivery method long sought in the field of gene therapy: a deactivated virus carrying a gene of interest that can be injected into the bloodstream and make its way to the right cells.

In this early proof-of-concept study, the scientists have shown that they can target in mice without affecting healthy tissues.

"Most current gene therapies in humans involve taking cells out of the body, modifying them and putting them back in," said David T. Curiel, MD, PhD, distinguished professor of radiation oncology. "This limits to conditions affecting tissues like the blood or bone marrow that can be removed, treated and returned to the patient. Today, even after 30 years of research, we can't inject a to deliver a gene and have it go to the right place."

But now, investigators at Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine say they have designed a "targetable injectable vector" – a deactivated virus that homes in on the inner lining of tumor blood vessels and does not get stuck in the liver, a problem that has plagued past attempts.

The findings are reported Dec. 23 in PLOS ONE.

Building on their own previous work and others', the researchers engineered this viral vector to turn on its gene payload only in the that help fuel and nurture tumor growth. But unlike most therapies aimed at tumor vasculature, the goal is not to destroy the cancer's blood supply.

"We don't want to kill ," said senior author Jeffrey M. Arbeit, MD, professor of urologic surgery and of cell biology and physiology. "We want to hijack them and turn them into factories for producing molecules that alter the tumor microenvironment so that it no longer nurtures the tumor. This could stop the itself or cooperate with standard chemotherapy and radiation to make them more effective. One advantage of this strategy is that it could be applied to nearly all of the most common cancers affecting patients."

In theory, Arbeit pointed out, this approach could be applied to diseases other than cancer in which the blood vessels are abnormal, including conditions like Alzheimer's disease, multiple sclerosis or heart failure.

The viral vector Curiel, Arbeit and their colleagues developed contains a section of DNA called ROBO4 known to be switched on in the cells lining blood vessels within tumors.

In mice, the researchers showed that they could inject the vector into the blood stream and that it accumulated in the tumor vasculature, largely avoiding the lung, kidney, heart and other healthy organs.

The researchers used the viral vectors to deliver a gene that simply caused cells lining the blood vessels to glow green so they could see whether the vectors gathered in the tumors and bypassed healthy areas.

These mice had tumors in the kidneys and cancerous kidney cells in the skin. In one case, the in the mouse kidney spontaneously spread to an ovary. The investigators showed that the blood vessels feeding the metastatic tumors glowed green but not vessels in the normal part of the ovary.

Adding the anti-clotting drug warfarin also blocked the vector from gathering in the liver by blocking viral interactions with the body's blood-clotting machinery, according to the study. While the researchers say treating cancer patients with warfarin would not be feasible because of the bleeding risk, previous work from their group has shown genetic ways to manipulate the viral vector to prevent it from accumulating in the liver.

"We used a combination of targeting strategies," said Curiel. "We combined a method we had developed to detarget the liver and a method to target the . This combination allowed us to inject the vector into the bloodstream of the mouse, where it avoided the liver and found the proliferative vessels of interest to us."

Explore further: Mouse model could help identify viral vectors that may cause tumors

More information: Lu ZH, Kaliberov S, Sohn RE, Kaliberova L, Curiel DT, Arbeit JM. Transcriptional targeting of primary and metastatic tumor neovasculature by an adenoviral type 5 roundabout4 vector in mice. PLOS ONE. Dec. 23, 2013.

Related Stories

Clarifying the effect of stem cell therapy on cancer

April 29, 2013

Injection of human stem cells into mice with tumors slowed down tumor growth, finds research published in BioMed Central's open access journal Stem Cell Research & Therapy. Human mesenchymal stem cells (MSC), isolated from ...

Blood-pressure drug may help improve cancer treatment

October 1, 2013

Use of existing, well-established hypertension drugs could improve the outcome of cancer chemotherapy by opening up collapsed blood vessels in solid tumors. In their report in the online journal Nature Communications, Massachusetts ...

Gene therapy trial for 'Bubble boy' disease promising

December 9, 2013

(Medical Xpress)—Researchers reported promising outcomes data for the first group of boys with X-linked severe combined immunodeficiency syndrome (SCID-X1), a fatal genetic immunodeficiency also known as "bubble boy" disease, ...

Recommended for you

Elephants provide big clue in fight against cancer

October 9, 2015

Carlo Maley spends his time pondering pachyderms—and cactuses and whales, and a wide array of non-human species—all in pursuit of the answer to this question: Why do some life forms get cancer while others do not?

Compound doubles up on cancer detection

October 8, 2015

Tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer, according to a study published last week in the Proceedings of the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.