Two players produce destructive cascade of diabetic retinopathy

January 13, 2014
2 players produce destructive cascade of diabetic retinopathy
This is a photo of Dr. Modesto Rojas, MCG postdoctoral fellow and first author of the study in the journal PLOS ONE and research associate Zhimin Xu. Credit: Phil Jones

The retina can be bombarded by reactive oxygen species in diabetes, prompting events that destroy healthy blood vessels, form leaky new ones and ruin vision.

Now researchers have learned that those chemically reactive molecules must come from both the bone marrow as well as the retinal cells themselves to cause such serious consequences.

"It's a cascade that requires two players to signal the next event that causes the damage," said Dr. Ruth Caldwell, cell biologist at the Vascular Biology Center at the Medical College of Georgia at Georgia Regents University.

The good news is the finding also provides two new points for intervention, said Dr. Modesto Rojas, MCG postdoctoral fellow and first author of the study in the journal PLOS ONE.

Excessive glucose in the blood prompts excessive production of , or ROS, and the light-sensitive retina is particularly vulnerable. Caldwell's research team had previously documented that ROS from white blood cells produced by the as well as from retinal cells were the major instigators in , a leading cause of blindness worldwide. But they weren't sure which mattered most.

So they looked as several different scenarios, including mice lacking the ability to produce ROS by either the retinal or white blood cells, and found that if either were lacking, future damage was essentially eliminated. "One alone can't do it," said Caldwell, the study's corresponding author. "They did not develop the early signs of diabetic retinopathy that we were measuring."

While blocking ROS production by could be difficult, drugs already exist that reduce activation of white . Those cells not only make ROS, but also adhere to blood vessel walls in the retina that become sticky in diabetes, Rojas said. In fact, a study published in October 2013 in PLOS ONE showed that neutrophil inhibitory factor could block the vascular lesions that are a hallmark of diabetic retinopathy without hurting the immunity of diabetic mice. The MCG scientists note that decreased activation does not impact the immune protection also provide.

Next steps include studying those drugs in their animal models and learning more about how ROS causes the collateral damage that can destroy vision. "All of this is some sort of wound-healing response gone wrong," Caldwell said.

ROS, a natural byproduct of the body's use of oxygen, has healthy roles in the body, including cell signaling, but is destructive at high levels that result from disease states such as diabetes.

Explore further: Monoclonal antibody effective therapy for diabetic retinopathy

Related Stories

Researchers explain why some wound infections become chronic

December 17, 2013

Chronic wounds affect an estimated 6.5 million Americans at an annual cost of about $25 billion. Further, foot blisters and other diabetic ulcers or sores account for the vast majority of foot and leg amputations in the United ...

Recommended for you

Drug prevents type 1 diabetes in mice, study finds

September 14, 2015

The buildup of a substance in the pancreas during the pre-symptomatic stage of Type 1 diabetes is essential to the development of the disease, Stanford University School of Medicine researchers have shown.

Bacteria may cause type 2 diabetes

June 1, 2015

Bacteria and viruses have an obvious role in causing infectious diseases, but microbes have also been identified as the surprising cause of other illnesses, including cervical cancer (Human papilloma virus) and stomach ulcers ...

Engineered hot fat implants reduce weight gain in mice

August 20, 2015

Scientists at the University of California, Berkeley, have developed a novel way to engineer the growth and expansion of energy-burning "good" fat, and then found that this fat helped reduce weight gain and lower blood glucose ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.