In mapping feat, scientists pinpoint neurons where select memories grow

March 27, 2014
This is a group of neurons. Credit: EPFL/Human Brain Project

Memories are difficult to produce, often fragile, and dependent on any number of factors—including changes to various types of nerves. In the common fruit fly—a scientific doppelganger used to study human memory formation—these changes take place in multiple parts of the insect brain.

Scientists from the Florida campus of The Scripps Research Institute (TSRI) have been able to pinpoint a handful of neurons where certain types of memory formation occur, a mapping feat that one day could help scientists predict disease-damaged neurons in humans with the same specificity.

"What we found is that while a lot of the neurons will respond to sensory stimuli, only a certain subclass of neurons actually encodes the memory," said Seth Tomchik, a TSRI biologist who led the study, which was published March 27, 2014, online ahead of print by the journal Current Biology.

The researchers examined a type of neuron called —which respond to dopamine, a well-known neurotransmitter—and are involved in shaping diverse behaviors, including learning, motivation, addiction and obesity.

In the study, the scientists followed the stimulation of a large number of these neurons when an odor was paired with an aversive event such as a mild electric shock. The scientists then used imaging technology to follow changes in the brains of live flies, mapping the activation patterns of signaling molecules within the neurons and observing learning-related plasticity—in which neurons change and develop memory traces.

The scientists found that the neurons that did encode memories responded to a cellular signaling messenger known as cAMP (cyclic adenosine monophosphate) that is vital for many biological processes. cAMP is involved in a number of psychological disorders such as bipolar disorder and schizophrenia, and its dysregulation may underlie some cognitive symptoms of Alzheimer's disease and Neurofibramatosis I.

In fact, the study pointed to a specific location in the brain—a particular lobe with a region known as the mushroom body—where the neurons appear to be particularly sensitive to elevated amounts of cAMP.

According to Tomchik, that's an important finding in terms of human memory because olfactory memory formation in the fruit fly is very similar to formation.

"We have a good model in these two classes of , one that encodes and one that doesn't," he said. "Now we know exactly where the should be and where to look to see how disease may disrupt it."

Tamara Boto, the first author of the study and a member of Tomchik's laboratory, added, "We know where, but we don't yet know the mechanism of why only these subsets are affected. That's our next job—to figure that out."

More information: In addition to Tomchik and Boto, authors of the study, "Dopaminergic Modulation of Camp Drives Nonlinear Plasticity Across the Drosophila Mushroom Body Lobes," are Thierry Louis and Kantiya Jindachomthong of TSRI; and Kees Jalink of The Netherlands Cancer Institute, Amsterdam.

Related Stories

Scientists identify mechanism of long-term memory

April 13, 2011

Using advanced imaging technology, scientists from the Florida campus of The Scripps Research Institute have identified a change in chemical influx into a specific set of neurons in the common fruit fly that is fundamental ...

New clues to memory formation may help better treat dementia

November 27, 2013

Do fruit flies hold the key to treating dementia? Researchers at the University of Houston (UH) have taken a significant step forward in unraveling the mechanisms of Pavlovian conditioning. Their work will help them understand ...

Recommended for you

Surprising similarity in fly and mouse motion vision

July 29, 2015

At first glance, the eyes of mammals and those of insects do not seem to have much in common. However, a comparison of the neural circuits for detecting motion shows surprising parallels between flies and mice. Scientists ...

Research grasps how the brain plans gripping motion

July 28, 2015

With the results of a new study, neuroscientists have a firmer grasp on the way the brain formulates commands for the hand to grip an object. The advance could lead to improvements in future brain-computer interfaces that ...

New research rethinks how we grab and hold onto objects

July 28, 2015

It's been a long day. You open your fridge and grab a nice, cold beer. A pretty simple task, right? Wrong. While you're debating between an IPA and a lager, your nervous system is calculating a complex problem: how hard to ...

It don't mean a thing if the brain ain't got that swing

July 27, 2015

Like Duke Ellington's 1931 jazz standard, the human brain improvises while its rhythm section keeps up a steady beat. But when it comes to taking on intellectually challenging tasks, groups of neurons tune in to one another ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.