Study shows how brain cells shape temperature preferences

January 29, 2013, Scripps Research Institute

While the wooly musk ox may like it cold, fruit flies definitely do not. They like it hot, or at least warm. In fact, their preferred optimum temperature is very similar to that of humans—76 degrees F.

Scientists have known that a type of brain cell circuit helps regulate a variety of innate and learned behavior in animals, including their preferences. What has been a mystery is whether or not this behavior stems from a specific set of neurons (brain cells) or overlapping sets.

Now, a new study from The Scripps Research Institute (TSRI) shows that a complex set of overlapping works in concert to drive temperature preferences in the fruit fly Drosophila by affecting a single target, a heavy bundle of neurons within the fly brain known as the mushroom body. These nerve bundles, which get their name from their bulbous shape, play critical roles in learning and memory.

The study, published in the January 30, 2013 edition of the Journal of Neuroscience, shows that dopaminergic circuits— that synthesize dopamine, a common neurotransmitter—within the mushroom body do not encode a single signal, but rather perform a more complex computation of environmental conditions.

"We found that dopamine neurons process multiple inputs to generate multiple outputs—the same set of nerves process sensory information and reward-avoidance learning," said TSRI Assistant Professor Seth Tomchik. "This discovery helps lay the groundwork to better understand how information is processed in the brain. A similar set of neurons is involved in behavior preferences in humans—from basic rewards to more complex ."

Using imaging techniques that allow scientists to visualize in real time, the study illuminated the response of dopaminergic neurons to changes in temperature. The behavioral roles were then examined by silencing various subsets of these neurons. Flies were tested using a plate; the flies moved from one place to another to express their temperature preferences.

As it turns out, genetic silencing of dopaminergic neurons innervating the mushroom body substantially reduces cold avoidance behavior. "If you give the fly a choice, it will pick San Diego weather every time," Tomchik said, "but if you shut down those nerves, they suddenly don't mind being in Minnesota."

The study also showed dopaminergic neurons respond to cooling with sudden a burst of activity at the onset of a drop in temperature, before settling down to a lower steady-state level. This initial burst of dopamine could function to increase neuronal plasticity—the ability to adapt—during periods of environmental change when the organism needs to acquire new associative memories or update previous associations with temperature changes.

Explore further: In the insect brain, dopamine-releasing nerve cells are crucial to the formation of both punished, rewarded memories

More information: "Dopaminergic Neurons Encode a Distributed, Asymmetric Representation of Temperature in Drosophila," Journal of Neuroscience, 2013.

Related Stories

In the insect brain, dopamine-releasing nerve cells are crucial to the formation of both punished, rewarded memories

July 18, 2012
Children quickly learn to avoid negative situations and seek positive ones. But humans are not the only species capable of remembering positive and negative events; even the small brain of a fruit fly has this capacity. Dopamine-containing ...

Scientists identify mechanism of long-term memory

April 13, 2011
Using advanced imaging technology, scientists from the Florida campus of The Scripps Research Institute have identified a change in chemical influx into a specific set of neurons in the common fruit fly that is fundamental ...

Scientists shed light on age-related memory loss and possible treatments

April 2, 2012
Scientists from the Florida campus of The Scripps Research Institute have shown in animal models that the loss of memory that comes with aging is not necessarily a permanent thing.

Scientists identify neurotranmitters that lead to forgetting

May 9, 2012
While we often think of memory as a way of preserving the essential idea of who we are, little thought is given to the importance of forgetting to our wellbeing, whether what we forget belongs in the "horrible memories department" ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.