Scientists discover 'brakes' to stop cancer-causing 'car-crashes' in cells

(Medical Xpress)—Cancer Research UK scientists have discovered a new role for a protein that may put the brakes on cancer by stopping DNA from snapping, according to a study published in the journal Cell.

The called 'RECQL5' acts like a brake by attaching to another important protein called RNA polymerase II – which makes new proteins from our genes – and slows it down so it runs more smoothly, and does not stop and 'crash' while travelling along DNA.

The scientists, at the Cancer Research UK London Research Institute (LRI), found that if RNA polymerase stops, this can lead to catastrophic collisions with another protein known as DNA polymerase.

When these molecular machines collide on a long gene, like a stationary car being hit by an oncoming lorry on a fast road, this event can cause catastrophic damage to the DNA – breaking it, which may eventually lead to the cell becoming cancerous.

The RECQL5 protein helps prevent such collisions and reduces the likelihood that these potentially -causing events occur.

Study author, Dr Jesper Svejstrup, a Cancer Research UK scientists at the LRI, said: "We've known for some time that cells that have lost the protein RECQL5 are more likely to become cancerous, but until now, we've not been sure why this is.

"Our latest study shows that RECQL5 plays a vital role in moderating RNA polymerase II speed and ensuring stable progress across genes, which appears to reduce the number of collisions it makes with oncoming DNA proteins on long genes.

"Knowing more about this weakness in some cells could open up exciting new possibilities for targeting cancers with this mistake."

RECQL5 belongs to a family of five proteins known as RecQ helicases, three of which are linked to rare genetic diseases that predispose a person to developing cancer.

Nell Barrie, Cancer Research UK's senior science communications manager, said: "Discovering more about the nuts and bolts of what causes cancer will speed up the development of better treatments and improve our understanding of peoples' risk of developing the disease."

More information: "RECQL5 Controls Transcript Elongation and Suppresses Genome Instability Associated with Transcription Stress." Saponaro, Marco et al. Cell (2014) DOI: dx.doi.org/10.1016/j.cell.2014.03.048

add to favorites email to friend print save as pdf

Related Stories

Detailed image shows how genomes are copied

Dec 02, 2013

For the first time, researchers at Umeå University have succeeded in showing how the DNA polymerase epsilon enzyme builds new genomes. The detailed image produced by these researchers shows how mutations ...

Recommended for you

Immune checkpoint inhibitors may work in brain cancers

8 hours ago

New evidence that immune checkpoint inhibitors may work in glioblastoma and brain metastases was presented today by Dr Anna Sophie Berghoff at the ESMO Symposium on Immuno-Oncology 2014 in Geneva, Switzerland.

New model of follow up for breast cancer patients

12 hours ago

Public health researchers from the University of Adelaide have evaluated international breast cancer guidelines, finding that there is potential to improve surveillance of breast cancer survivors from both a patient and health ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.