New research explains how we use the GPS inside our brain to navigate

June 5, 2014
Credit: Rice University

The way we navigate from A to B is controlled by two brain regions which track the distance to our destination, according to new research funded by the Wellcome Trust and published in Current Biology.

The study found that at the beginning of a journey, one region of the brain calculates the straight-line to the destination ('the distance as a crow flies'), but during travel a different area of the brain computes the precise distance along the path to get there.

The findings pinpoint the precise brain regions used and in doing so change how scientists believed we use our brain to navigate. Previously, researchers had disagreed over whether the brain calculates a route or calculates the straight-line to a destination. By revealing that the brain does both this research indicates not only that both ideas were correct, but should also be integrated.

Dr Hugo Spiers and his team at UCL used film footage to recreate the busy streets of Soho in London (UK) inside an MRI scanner. Study participants were asked to navigate through the district, famous for its winding roads and complex junctions, whilst their brain activity was monitored. The researchers analysed brain activity during the different stages of the journey: setting course for the destination, keeping track of the destination while travelling, and decision making at street junctions.

The team found that activity in the , a region essential for navigation and memory, was sensitive to the straight-line distance to the destination when first working out how to get there. By contrast, during the rest of the journey, the posterior hippocampus, also famous for its role in navigation and memory, became active when keeping track of the path needed to reach the destination.

The results also reveal what happens in our brain when we use a Sat Nav or GPS to get to a destination. By recording when participants used Sat Nav-like instructions to reach their goal, the researchers found that neither of the tracked the distance to the destination and in general the brain was much less active.

Dr Spiers said: "Our team developed a new strategy for testing navigation and found that the way our brain directs our navigation is more complex than we imagined, calculating two types of distance in separate areas of the brain." He also commented on how the results might explain why London taxi drivers famously end up with an enlarged posterior hippocampus: "Our results indicate that it is the daily demand on processing paths in their posterior hippocampus that leads to the impressive expansion in their grey matter".

"These findings help us understand the mechanisms by which the hippocampus and entorhinal cortex guide navigation. The research is also a substantial step towards understanding how we use our in real world environments, of which we currently know very little."

Dr John Williams, head of clinical activities, neuroscience and mental health at the Wellcome Trust said: "These findings provide insight into the underlying biology of mental health conditions which affect our memory. The hippocampus and entorhinal cortex are among the first regions to be damaged in the dementia associated with Alzheimer's disease and these results provide some explanation as to why such patients struggle to find their way and become lost. Combining these findings with clinical work could enable medical benefits in the future."

Explore further: Brain imaging study reveals our brains 'divide and conquer'

More information: Howard LR, Javadi AH, Yu Y, Mill RD, Morrison LC, Knight R, Loftus MM, Laura Staskute L and Spiers HJ. Hippocampus and entorhinal cortex encode the path and Euclidean distance to goals during navigation. Current Biology. June 2014.

Related Stories

Recommended for you

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...

Neurons encoding hand shapes identified in human brain

November 23, 2015

Neural prosthetic devices, which include small electrode arrays implanted in the brain, can allow paralyzed patients to control the movement of a robotic limb, whether that limb is attached to the individual or not. In May ...

Wireless sensor enables study of traumatic brain injury

November 23, 2015

A new system that uses a wireless implant has been shown to record for the first time how brain tissue deforms when subjected to the kind of shock that causes blast-induced trauma commonly seen in combat veterans.

Neuroscientists reveal how the brain can enhance connections

November 18, 2015

When the brain forms memories or learns a new task, it encodes the new information by tuning connections between neurons. MIT neuroscientists have discovered a novel mechanism that contributes to the strengthening of these ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.