Epilepsy halted in mice

August 3, 2009
Lab mice

Scientists at Leeds have prevented epilepsy caused by a gene defect from being passed on to mice offspring - an achievement which may herald new therapies for people suffering from the condition.

The study is published today in the US journal (PNAS). It offers, for the first time, irrefutable proof that a faulty version of a gene known as Atp1a3 is responsible for causing epileptic seizures in mice.

Says lead researcher Dr Steve Clapcote, of the University of Leeds' Faculty of Biological Sciences: "Atp1a3 makes an enzyme called a sodium-potassium pump that regulates levels of sodium and potassium in the brain's . An imbalance of sodium and potassium levels has long been suspected to lead to epileptic seizures, but our study is the first to show beyond any doubt that a defect in this gene is responsible."

is a common that affects almost 1 in every 200 people, and yet the causes are unknown in the majority of cases. Current drug treatments are ineffective in around one third of epilepsy patients.

To prove the gene's role, the team studied a special strain of mouse, called Myshkin, which has an inherited form of severe epilepsy. The researchers found that these mice have a defective Atp1a3 gene, which led to them all having spontaneous seizures displaying the characteristic brain activity of epilepsy. To confirm that the seizures were epileptic, the team showed that mice treated with an antiepileptic drug, valproic acid, had fewer, less severe seizures.

When the epileptic Myshkin strain was bred with a transgenic mouse strain that has an extra copy of the normal Atp1a3 gene, the additional normal gene counteracted the faulty gene - resulting in offspring which were completely free from epilepsy.

"Our study has identified a new way in which epilepsy can be caused and prevented in mice, and therefore it may provide clues to potential causes, therapies and preventive measures in human epilepsy," says Dr Clapcote.

"Our results are very promising, but there's a long way to go before this research could yield new antiepileptic therapies. However, the human ATP1A3 gene matches the mouse version of the gene by more than 99 per cent, so we've already started to screen DNA samples from epilepsy patients to investigate whether ATP1A3 gene defects are involved the human condition."

Commenting on the research, Delphine van der Pauw, Research and Information Executive at Epilepsy Research UK said: "These results are promising. Not only have Dr Clapcote and his team highlighted a new culprit gene for epilepsy in ; but they have also shown how normal activity of the affected sodium-potassium pump can be restored. If the findings can be repeated in human studies, new avenues for the prevention and treatment of inherited epilepsy will be opened."

Source: University of Leeds (news : web)

Related Stories

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.