Brain connections for stress -- lessons from the worm

April 18, 2010, University of Copenhagen
The entire nervous system is marked with red fluorescent protein and a subset of sensory and interneurons marked with green fluorescent protein Credit: Roger Pocock

Did you ever wonder how you are able to perform complex tasks - even under stress? And how do emotions and memories mould your ability to live your everyday lives? The answer is just beginning to be understood and lies in hidden circuits in the brain.

Pioneering work by Roger Pocock, a newly arrived Group Leader at the research centre BRIC, University of Copenhagen, reveals the remarkable ability of organisms to activate latent under stressful conditions. It is suggested that such circuits form part of an escape response that enables animals to sense their environment and adapt their behaviour under unfavourable conditions. This work is being published in the journal Nature Neuroscience on April 18.

The human brain contains billions of neurons that build trillions of connections making it very complex to study behaviour at the level of the single neuron. Therefore, the Pocock laboratory uses the simple nervous system of the microscopic worm, Caenorhabditis elegans, to model how our environment modifies gene function, neuronal circuitry and behaviour. Using C. elegans, which contains just 302 neurons, Dr Pocock has identified a hidden neuronal circuit that modulates sensory perception under stress. Specifically, this work discovered that physiological detection of hypoxic (low oxygen) stress results in the activation of a hidden neuronal circuit involving the neuromodulators serotonin and the neuropeptide Y receptor.

This work implicates that mechanisms coupling hypoxia, serotonin and neuropeptide signaling also modifies behaviour in mammals. In fact, hypoxic stress enhances and neuropeptide production in specific regions of the mammalian , however, the functional output of this is poorly understood.

Roger Pocock did the experiments for this article at Columbia University, New York, where he worked as a researcher before coming to Denmark. He has previously published novel findings in Nature Neuroscience and his strong research potential within this field was essential for his recruitment as a Group Leader at BRIC.

"These and other studies in the burgeoning field of environment-gene-neuron interactions will hopefully enable us to better understand how to cope with stress in our every-changing and busy lives" says Roger Pocock.

As Charles Darwin himself said 'Man is but a worm'!

More information: Hypoxia activates a latent circuit for processing gustatory information in C. elegans. Roger Pocock & Oliver Hobert, Nature Neuroscience, April 18, 2010.

Related Stories

Recommended for you

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.